

    
      
          
            
  


Documentation for COBRApy

For installation instructions, please see INSTALL.rst [https://github.com/opencobra/cobrapy/blob/master/INSTALL.rst].

Many of the examples below are viewable as IPython notebooks, which can
be viewed at nbviewer [http://nbviewer.ipython.org/github/opencobra/cobrapy/tree/master/documentation_builder/].



	1. Getting Started
	1.1. Loading a model and inspecting it

	1.2. Reactions

	1.3. Metabolites

	1.4. Genes

	1.5. Making changes reversibly using models as contexts





	2. Building a Model

	3. Reading and Writing Models
	3.1. SBML

	3.2. JSON

	3.3. YAML

	3.4. MATLAB

	3.5. Pickle





	4. Simulating with FBA
	4.1. Running FBA

	4.2. Changing the Objectives

	4.3. Running FVA

	4.4. Running pFBA





	5. Simulating Deletions
	5.1. Knocking out single genes and reactions

	5.2. Single Deletions

	5.3. Double Deletions





	6. Production envelopes

	7. Flux sampling
	7.1. Basic usage

	7.2. Advanced usage

	7.3. Adding constraints





	8. Loopless FBA
	8.1. Loopless solution

	8.2. Loopless model

	8.3. Method





	9. Gapfillling

	10. Solvers
	10.1. Internal solver interfaces





	11. Tailored constraints, variables and objectives
	11.1. Constraints

	11.2. Objectives

	11.3. Variables





	12. Using the COBRA toolbox with cobrapy

	13. FAQ
	13.1. How do I install cobrapy?

	13.2. How do I cite cobrapy?

	13.3. How do I rename reactions or metabolites?

	13.4. How do I delete a gene?

	13.5. How do I change the reversibility of a Reaction?

	13.6. How do I generate an LP file from a COBRA model?





	14. cobra
	14.1. cobra package












Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  


1. Getting Started


1.1. Loading a model and inspecting it

To begin with, cobrapy comes with bundled models for Salmonella and
E. coli, as well as a “textbook” model of E. coli core metabolism.
To load a test model, type



In [1]:






from __future__ import print_function

import cobra
import cobra.test

# "ecoli" and "salmonella" are also valid arguments
model = cobra.test.create_test_model("textbook")







The reactions, metabolites, and genes attributes of the cobrapy model
are a special type of list called a cobra.DictList, and each one is
made up of cobra.Reaction, cobra.Metabolite and cobra.Gene
objects respectively.



In [2]:






print(len(model.reactions))
print(len(model.metabolites))
print(len(model.genes))













95
72
137






When using Jupyter
notebook [https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/]
this type of information is rendered as a table.



In [3]:






model









Out[3]:







    
        	Name
        	e_coli_core
    

        	Memory address
        	0x01116ea9e8
    

        	Number of metabolites
        	72
    

        	Number of reactions
        	95
    

        	Objective expression
        	-1.0*Biomass_Ecoli_core_reverse_2cdba + 1.0*Biomass_Ecoli_core
    

        	Compartments
        	cytosol, extracellular
    

  




Just like a regular list, objects in the DictList can be retrieved
by index. For example, to get the 30th reaction in the model (at index
29 because of
0-indexing [https://en.wikipedia.org/wiki/Zero-based_numbering]):



In [4]:






model.reactions[29]









Out[4]:







    
        	Reaction identifier	EX_glu__L_e
    

        	Name	L-Glutamate exchange
    

        	Memory address
        	0x011b8643c8
    

        	Stoichiometry
        	
            glu__L_e --> 

            L-Glutamate --> 

        
    

        	GPR	
    

        	Lower bound	0.0
    

        	Upper bound	1000.0
    






Additionally, items can be retrieved by their id using the
DictList.get_by_id() function. For example, to get the cytosolic atp
metabolite object (the id is “atp_c”), we can do the following:



In [5]:






model.metabolites.get_by_id("atp_c")









Out[5]:







    
        	Metabolite identifier	atp_c
    

        	Name	ATP
    

        	Memory address
        	0x011b7f82b0
    

        	Formula	C10H12N5O13P3
    

        	Compartment	c
    

        	In 13 reaction(s)	
            PYK, GLNS, ATPS4r, SUCOAS, PPCK, GLNabc, ATPM, ACKr, Biomass_Ecoli_core, ADK1, PPS, PFK, PGK
    






As an added bonus, users with an interactive shell such as IPython will
be able to tab-complete to list elements inside a list. While this is
not recommended behavior for most code because of the possibility for
characters like “-” inside ids, this is very useful while in an
interactive prompt:



In [6]:






model.reactions.EX_glc__D_e.bounds









Out[6]:






(-10.0, 1000.0)










1.2. Reactions

We will consider the reaction glucose 6-phosphate isomerase, which
interconverts glucose 6-phosphate and fructose 6-phosphate. The reaction
id for this reaction in our test model is PGI.



In [7]:






pgi = model.reactions.get_by_id("PGI")
pgi









Out[7]:







    
        	Reaction identifier	PGI
    

        	Name	glucose-6-phosphate isomerase
    

        	Memory address
        	0x011b886a90
    

        	Stoichiometry
        	
            g6p_c 
  
    
    2. Building a Model
    

    
 
  
  

    
      
          
            
  


2. Building a Model

This simple example demonstrates how to create a model, create a
reaction, and then add the reaction to the model.

We’ll use the ‘3OAS140’ reaction from the STM_1.0 model:

1.0 malACP[c] + 1.0 h[c] + 1.0 ddcaACP[c] \(\rightarrow\) 1.0 co2[c]
+ 1.0 ACP[c] + 1.0 3omrsACP[c]

First, create the model and reaction.



In [1]:






from __future__ import print_function









In [2]:






from cobra import Model, Reaction, Metabolite
# Best practise: SBML compliant IDs
model = Model('example_model')

reaction = Reaction('3OAS140')
reaction.name = '3 oxoacyl acyl carrier protein synthase n C140 '
reaction.subsystem = 'Cell Envelope Biosynthesis'
reaction.lower_bound = 0.  # This is the default
reaction.upper_bound = 1000.  # This is the default







We need to create metabolites as well. If we were using an existing
model, we could use Model.get_by_id to get the appropriate
Metabolite objects instead.



In [3]:






ACP_c = Metabolite(
    'ACP_c',
    formula='C11H21N2O7PRS',
    name='acyl-carrier-protein',
    compartment='c')
omrsACP_c = Metabolite(
    '3omrsACP_c',
    formula='C25H45N2O9PRS',
    name='3-Oxotetradecanoyl-acyl-carrier-protein',
    compartment='c')
co2_c = Metabolite('co2_c', formula='CO2', name='CO2', compartment='c')
malACP_c = Metabolite(
    'malACP_c',
    formula='C14H22N2O10PRS',
    name='Malonyl-acyl-carrier-protein',
    compartment='c')
h_c = Metabolite('h_c', formula='H', name='H', compartment='c')
ddcaACP_c = Metabolite(
    'ddcaACP_c',
    formula='C23H43N2O8PRS',
    name='Dodecanoyl-ACP-n-C120ACP',
    compartment='c')







Adding metabolites to a reaction requires using a dictionary of the
metabolites and their stoichiometric coefficients. A group of
metabolites can be added all at once, or they can be added one at a
time.



In [4]:






reaction.add_metabolites({
    malACP_c: -1.0,
    h_c: -1.0,
    ddcaACP_c: -1.0,
    co2_c: 1.0,
    ACP_c: 1.0,
    omrsACP_c: 1.0
})

reaction.reaction  # This gives a string representation of the reaction









Out[4]:






'ddcaACP_c + h_c + malACP_c --> 3omrsACP_c + ACP_c + co2_c'







The gene_reaction_rule is a boolean representation of the gene
requirements for this reaction to be active as described in
Schellenberger et al 2011 Nature Protocols
6(9):1290-307 [http://dx.doi.org/doi:10.1038/nprot.2011.308]. We will
assign the gene reaction rule string, which will automatically create
the corresponding gene objects.



In [5]:






reaction.gene_reaction_rule = '( STM2378 or STM1197 )'
reaction.genes









Out[5]:






frozenset({<Gene STM1197 at 0x7f2d85786898>, <Gene STM2378 at 0x7f2dc45437f0>})







At this point in time, the model is still empty



In [6]:






print('%i reactions initially' % len(model.reactions))
print('%i metabolites initially' % len(model.metabolites))
print('%i genes initially' % len(model.genes))













0 reactions initially
0 metabolites initially
0 genes initially






We will add the reaction to the model, which will also add all
associated metabolites and genes



In [7]:






model.add_reactions([reaction])

# Now there are things in the model
print('%i reaction' % len(model.reactions))
print('%i metabolites' % len(model.metabolites))
print('%i genes' % len(model.genes))













1 reaction
6 metabolites
2 genes






We can iterate through the model objects to observe the contents



In [8]:






# Iterate through the the objects in the model
print("Reactions")
print("---------")
for x in model.reactions:
    print("%s : %s" % (x.id, x.reaction))

print("")
print("Metabolites")
print("-----------")
for x in model.metabolites:
    print('%9s : %s' % (x.id, x.formula))

print("")
print("Genes")
print("-----")
for x in model.genes:
    associated_ids = (i.id for i in x.reactions)
    print("%s is associated with reactions: %s" %
          (x.id, "{" + ", ".join(associated_ids) + "}"))













Reactions
---------
3OAS140 : ddcaACP_c + h_c + malACP_c --> 3omrsACP_c + ACP_c + co2_c

Metabolites
-----------
    co2_c : CO2
 malACP_c : C14H22N2O10PRS
      h_c : H
3omrsACP_c : C25H45N2O9PRS
ddcaACP_c : C23H43N2O8PRS
    ACP_c : C11H21N2O7PRS

Genes
-----
STM1197 is associated with reactions: {3OAS140}
STM2378 is associated with reactions: {3OAS140}






Last we need to set the objective of the model. Here, we just want this
to be the maximization of the flux in the single reaction we added and
we do this by assigning the reaction’s identifier to the objective
property of the model.



In [9]:






model.objective = '3OAS140'







The created objective is a symbolic algebraic expression and we can
examine it by printing it



In [10]:






print(model.objective.expression)
print(model.objective.direction)













-1.0*3OAS140_reverse_65ddc + 1.0*3OAS140
max






which here shows that the solver will maximize the flux in the forward
direction.





          

      

      

    

  

  
    
    3. Reading and Writing Models
    

    
 
  
  

    
      
          
            
  


3. Reading and Writing Models

Cobrapy supports reading and writing models in SBML (with and without
FBC), JSON, YAML, MAT, and pickle formats. Generally, SBML with FBC
version 2 is the preferred format for general use. The JSON format may
be more useful for cobrapy-specific functionality.

The package also ships with test models in various formats for testing
purposes.



In [1]:






import cobra.test
import os
from os.path import join

data_dir = cobra.test.data_dir

print("mini test files: ")
print(", ".join(i for i in os.listdir(data_dir) if i.startswith("mini")))

textbook_model = cobra.test.create_test_model("textbook")
ecoli_model = cobra.test.create_test_model("ecoli")
salmonella_model = cobra.test.create_test_model("salmonella")













mini test files:
mini.json, mini.mat, mini.pickle, mini.yml, mini_cobra.xml, mini_fbc1.xml, mini_fbc2.xml, mini_fbc2.xml.bz2, mini_fbc2.xml.gz







3.1. SBML

The Systems Biology Markup Language [http://sbml.org] is an
XML-based standard format for distributing models which has support for
COBRA models through the FBC
extension [http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/Flux_Balance_Constraints_%28flux%29]
version 2.

Cobrapy has native support for reading and writing SBML with FBCv2.
Please note that all id’s in the model must conform to the SBML SID
requirements in order to generate a valid SBML file.



In [2]:






cobra.io.read_sbml_model(join(data_dir, "mini_fbc2.xml"))









Out[2]:







    
        	Name
        	mini_textbook
    

        	Memory address
        	0x01074fd080
    

        	Number of metabolites
        	23
    

        	Number of reactions
        	18
    

        	Objective expression
        	-1.0*ATPM_reverse_5b752 - 1.0*PFK_reverse_d24a6 + 1.0*PFK + 1.0*ATPM
    

        	Compartments
        	cytosol, extracellular
    

  






In [3]:






cobra.io.write_sbml_model(textbook_model, "test_fbc2.xml")







There are other dialects of SBML prior to FBC 2 which have previously
been use to encode COBRA models. The primary ones is the “COBRA” dialect
which used the “notes” fields in SBML files.

Cobrapy can use libsbml [http://sbml.org/Software/libSBML], which
must be installed separately (see installation instructions) to read and
write these files. When reading in a model, it will automatically detect
whether FBC was used or not. When writing a model, the use_fbc_package
flag can be used can be used to write files in this legacy “cobra”
format.

Consider having the lxml [http://lxml.de/] package installed as it
can speed up parsing considerably.



In [4]:






cobra.io.read_sbml_model(join(data_dir, "mini_cobra.xml"))









Out[4]:







    
        	Name
        	mini_textbook
    

        	Memory address
        	0x0112fa6b38
    

        	Number of metabolites
        	23
    

        	Number of reactions
        	18
    

        	Objective expression
        	-1.0*ATPM_reverse_5b752 - 1.0*PFK_reverse_d24a6 + 1.0*PFK + 1.0*ATPM
    

        	Compartments
        	cytosol, extracellular
    

  






In [5]:






cobra.io.write_sbml_model(
    textbook_model, "test_cobra.xml", use_fbc_package=False)










3.2. JSON

Cobrapy models have a JSON [https://en.wikipedia.org/wiki/JSON]
(JavaScript Object Notation) representation. This format was created for
interoperability with escher [https://escher.github.io].



In [6]:






cobra.io.load_json_model(join(data_dir, "mini.json"))









Out[6]:







    
        	Name
        	mini_textbook
    

        	Memory address
        	0x0113061080
    

        	Number of metabolites
        	23
    

        	Number of reactions
        	18
    

        	Objective expression
        	-1.0*ATPM_reverse_5b752 - 1.0*PFK_reverse_d24a6 + 1.0*PFK + 1.0*ATPM
    

        	Compartments
        	cytosol, extracellular
    

  






In [7]:






cobra.io.save_json_model(textbook_model, "test.json")










3.3. YAML

Cobrapy models have a YAML [https://en.wikipedia.org/wiki/YAML]
(YAML Ain’t Markup Language) representation. This format was created for
more human readable model representations and automatic diffs between
models.



In [8]:






cobra.io.load_yaml_model(join(data_dir, "mini.yml"))









Out[8]:







    
        	Name
        	mini_textbook
    

        	Memory address
        	0x0113013390
    

        	Number of metabolites
        	23
    

        	Number of reactions
        	18
    

        	Objective expression
        	-1.0*ATPM_reverse_5b752 - 1.0*PFK_reverse_d24a6 + 1.0*PFK + 1.0*ATPM
    

        	Compartments
        	extracellular, cytosol
    

  






In [9]:






cobra.io.save_yaml_model(textbook_model, "test.yml")










3.4. MATLAB

Often, models may be imported and exported solely for the purposes of
working with the same models in cobrapy and the MATLAB cobra
toolbox [http://opencobra.github.io/cobratoolbox/]. MATLAB has its
own “.mat” format for storing variables. Reading and writing to these
mat files from python requires scipy.

A mat file can contain multiple MATLAB variables. Therefore, the
variable name of the model in the MATLAB file can be passed into the
reading function:



In [10]:






cobra.io.load_matlab_model(
    join(data_dir, "mini.mat"), variable_name="mini_textbook")









Out[10]:







    
        	Name
        	mini_textbook
    

        	Memory address
        	0x0113000b70
    

        	Number of metabolites
        	23
    

        	Number of reactions
        	18
    

        	Objective expression
        	-1.0*ATPM_reverse_5b752 - 1.0*PFK_reverse_d24a6 + 1.0*PFK + 1.0*ATPM
    

        	Compartments
        	c, e
    

  




If the mat file contains only a single model, cobra can figure out which
variable to read from, and the variable_name parameter is unnecessary.



In [11]:






cobra.io.load_matlab_model(join(data_dir, "mini.mat"))









Out[11]:







    
        	Name
        	mini_textbook
    

        	Memory address
        	0x0113758438
    

        	Number of metabolites
        	23
    

        	Number of reactions
        	18
    

        	Objective expression
        	-1.0*ATPM_reverse_5b752 - 1.0*PFK_reverse_d24a6 + 1.0*PFK + 1.0*ATPM
    

        	Compartments
        	c, e
    

  




Saving models to mat files is also relatively straightforward



In [12]:






cobra.io.save_matlab_model(textbook_model, "test.mat")










3.5. Pickle

Cobra models can be serialized using the python serialization format,
pickle [https://docs.python.org/2/library/pickle.html].

Please note that use of the pickle format is generally not recommended
for most use cases. JSON, SBML, and MAT are generally the preferred
formats.







          

      

      

    

  

  
    
    4. Simulating with FBA
    

    
 
  
  

    
      
          
            
  


4. Simulating with FBA

Simulations using flux balance analysis can be solved using
Model.optimize(). This will maximize or minimize (maximizing is the
default) flux through the objective reactions.



In [1]:






import cobra.test
model = cobra.test.create_test_model("textbook")








4.1. Running FBA



In [2]:






solution = model.optimize()
print(solution)













<Solution 0.874 at 0x112eb3d30>






The Model.optimize() function will return a Solution object. A solution
object has several attributes:


	objective_value: the objective value


	status: the status from the linear programming solver


	fluxes: a pandas series with flux indexed by reaction identifier.
The flux for a reaction variable is the difference of the primal
values for the forward and reverse reaction variables.


	shadow_prices: a pandas series with shadow price indexed by the
metabolite identifier.




For example, after the last call to model.optimize(), if the
optimization succeeds it’s status will be optimal. In case the model is
infeasible an error is raised.



In [3]:






solution.objective_value









Out[3]:






0.8739215069684307







The solvers that can be used with cobrapy are so fast that for many
small to mid-size models computing the solution can be even faster than
it takes to collect the values from the solver and convert to them
python objects. With model.optimize, we gather values for all
reactions and metabolites and that can take a significant amount of time
if done repeatedly. If we are only interested in the flux value of a
single reaction or the objective, it is faster to instead use
model.slim_optimize which only does the optimization and returns the
objective value leaving it up to you to fetch other values that you may
need.



In [4]:






%%time
model.optimize().objective_value













CPU times: user 3.84 ms, sys: 672 µs, total: 4.51 ms
Wall time: 6.16 ms








Out[4]:






0.8739215069684307









In [5]:






%%time
model.slim_optimize()













CPU times: user 229 µs, sys: 19 µs, total: 248 µs
Wall time: 257 µs








Out[5]:






0.8739215069684307








4.1.1. Analyzing FBA solutions

Models solved using FBA can be further analyzed by using summary
methods, which output printed text to give a quick representation of
model behavior. Calling the summary method on the entire model displays
information on the input and output behavior of the model, along with
the optimized objective.



In [6]:






model.summary()













IN FLUXES        OUT FLUXES    OBJECTIVES
---------------  ------------  ----------------------
o2_e      21.8   h2o_e  29.2   Biomass_Ecol...  0.874
glc__D_e  10     co2_e  22.8
nh4_e      4.77  h_e    17.5
pi_e       3.21






In addition, the input-output behavior of individual metabolites can
also be inspected using summary methods. For instance, the following
commands can be used to examine the overall redox balance of the model



In [7]:






model.metabolites.nadh_c.summary()













PRODUCING REACTIONS -- Nicotinamide adenine dinucleotide - reduced (nadh_c)
---------------------------------------------------------------------------
%       FLUX  RXN ID      REACTION
----  ------  ----------  --------------------------------------------------
42%    16     GAPD        g3p_c + nad_c + pi_c <=> 13dpg_c + h_c + nadh_c
24%     9.28  PDH         coa_c + nad_c + pyr_c --> accoa_c + co2_c + nadh_c
13%     5.06  AKGDH       akg_c + coa_c + nad_c --> co2_c + nadh_c + succ...
13%     5.06  MDH         mal__L_c + nad_c <=> h_c + nadh_c + oaa_c
8%      3.1   Biomass...  1.496 3pg_c + 3.7478 accoa_c + 59.81 atp_c + 0....

CONSUMING REACTIONS -- Nicotinamide adenine dinucleotide - reduced (nadh_c)
---------------------------------------------------------------------------
%       FLUX  RXN ID      REACTION
----  ------  ----------  --------------------------------------------------
100%   38.5   NADH16      4.0 h_c + nadh_c + q8_c --> 3.0 h_e + nad_c + q...






Or to get a sense of the main energy production and consumption
reactions



In [8]:






model.metabolites.atp_c.summary()













PRODUCING REACTIONS -- ATP (atp_c)
----------------------------------
%      FLUX  RXN ID      REACTION
---  ------  ----------  --------------------------------------------------
67%  45.5    ATPS4r      adp_c + 4.0 h_e + pi_c <=> atp_c + h2o_c + 3.0 h_c
23%  16      PGK         3pg_c + atp_c <=> 13dpg_c + adp_c
7%    5.06   SUCOAS      atp_c + coa_c + succ_c <=> adp_c + pi_c + succoa_c
3%    1.76   PYK         adp_c + h_c + pep_c --> atp_c + pyr_c

CONSUMING REACTIONS -- ATP (atp_c)
----------------------------------
%      FLUX  RXN ID      REACTION
---  ------  ----------  --------------------------------------------------
76%  52.3    Biomass...  1.496 3pg_c + 3.7478 accoa_c + 59.81 atp_c + 0....
12%   8.39   ATPM        atp_c + h2o_c --> adp_c + h_c + pi_c
11%   7.48   PFK         atp_c + f6p_c --> adp_c + fdp_c + h_c
0%    0.223  GLNS        atp_c + glu__L_c + nh4_c --> adp_c + gln__L_c +...











4.2. Changing the Objectives

The objective function is determined from the objective_coefficient
attribute of the objective reaction(s). Generally, a “biomass” function
which describes the composition of metabolites which make up a cell is
used.



In [9]:






biomass_rxn = model.reactions.get_by_id("Biomass_Ecoli_core")







Currently in the model, there is only one reaction in the objective (the
biomass reaction), with an linear coefficient of 1.



In [10]:






from cobra.util.solver import linear_reaction_coefficients
linear_reaction_coefficients(model)









Out[10]:






{<Reaction Biomass_Ecoli_core at 0x112eab4a8>: 1.0}







The objective function can be changed by assigning Model.objective,
which can be a reaction object (or just it’s name), or a dict of
{Reaction: objective_coefficient}.



In [11]:






# change the objective to ATPM
model.objective = "ATPM"

# The upper bound should be 1000, so that we get
# the actual optimal value
model.reactions.get_by_id("ATPM").upper_bound = 1000.
linear_reaction_coefficients(model)









Out[11]:






{<Reaction ATPM at 0x112eab470>: 1.0}









In [12]:






model.optimize().objective_value









Out[12]:






174.99999999999966







We can also have more complicated objectives including quadratic terms.




4.3. Running FVA

FBA will not give always give unique solution, because multiple flux
states can achieve the same optimum. FVA (or flux variability analysis)
finds the ranges of each metabolic flux at the optimum.



In [13]:






from cobra.flux_analysis import flux_variability_analysis









In [14]:






flux_variability_analysis(model, model.reactions[:10])









Out[14]:









  
    
      	
      	maximum
      	minimum
    

  
  
    
      	ACALD
      	-2.208811e-30
      	-5.247085e-14
    

    
      	ACALDt
      	0.000000e+00
      	-5.247085e-14
    

    
      	ACKr
      	0.000000e+00
      	-8.024953e-14
    

    
      	ACONTa
      	2.000000e+01
      	2.000000e+01
    

    
      	ACONTb
      	2.000000e+01
      	2.000000e+01
    

    
      	ACt2r
      	0.000000e+00
      	-8.024953e-14
    

    
      	ADK1
      	3.410605e-13
      	0.000000e+00
    

    
      	AKGDH
      	2.000000e+01
      	2.000000e+01
    

    
      	AKGt2r
      	0.000000e+00
      	-2.902643e-14
    

    
      	ALCD2x
      	0.000000e+00
      	-4.547474e-14
    

  







Setting parameter fraction_of_optimium=0.90 would give the flux
ranges for reactions at 90% optimality.



In [15]:






cobra.flux_analysis.flux_variability_analysis(
    model, model.reactions[:10], fraction_of_optimum=0.9)









Out[15]:









  
    
      	
      	maximum
      	minimum
    

  
  
    
      	ACALD
      	0.000000e+00
      	-2.692308
    

    
      	ACALDt
      	0.000000e+00
      	-2.692308
    

    
      	ACKr
      	6.635712e-30
      	-4.117647
    

    
      	ACONTa
      	2.000000e+01
      	8.461538
    

    
      	ACONTb
      	2.000000e+01
      	8.461538
    

    
      	ACt2r
      	0.000000e+00
      	-4.117647
    

    
      	ADK1
      	1.750000e+01
      	0.000000
    

    
      	AKGDH
      	2.000000e+01
      	2.500000
    

    
      	AKGt2r
      	2.651196e-16
      	-1.489362
    

    
      	ALCD2x
      	0.000000e+00
      	-2.333333
    

  







The standard FVA may contain loops, i.e. high absolute flux values that
only can be high if they are allowed to participate in loops (a
mathematical artifact that cannot happen in vivo). Use the loopless
argument to avoid such loops. Below, we can see that FRD7 and SUCDi
reactions can participate in loops but that this is avoided when using
the looplesss FVA.



In [16]:






loop_reactions = [model.reactions.FRD7, model.reactions.SUCDi]
flux_variability_analysis(model, reaction_list=loop_reactions, loopless=False)









Out[16]:









  
    
      	
      	maximum
      	minimum
    

  
  
    
      	FRD7
      	980.0
      	0.0
    

    
      	SUCDi
      	1000.0
      	20.0
    

  









In [17]:






flux_variability_analysis(model, reaction_list=loop_reactions, loopless=True)









Out[17]:









  
    
      	
      	maximum
      	minimum
    

  
  
    
      	FRD7
      	0.0
      	0.0
    

    
      	SUCDi
      	20.0
      	20.0
    

  








4.3.1. Running FVA in summary methods

Flux variability analysis can also be embedded in calls to summary
methods. For instance, the expected variability in substrate consumption
and product formation can be quickly found by



In [18]:






model.optimize()
model.summary(fva=0.95)













IN FLUXES                     OUT FLUXES                    OBJECTIVES
----------------------------  ----------------------------  ------------
id          Flux  Range       id          Flux  Range       ATPM  175
--------  ------  ----------  --------  ------  ----------
o2_e          60  [55.9, 60]  co2_e         60  [54.2, 60]
glc__D_e      10  [9.5, 10]   h2o_e         60  [54.2, 60]
nh4_e          0  [0, 0.673]  for_e          0  [0, 5.83]
pi_e           0  [0, 0.171]  h_e            0  [0, 5.83]
                              ac_e           0  [0, 2.06]
                              acald_e        0  [0, 1.35]
                              pyr_e          0  [0, 1.35]
                              etoh_e         0  [0, 1.17]
                              lac__D_e       0  [0, 1.13]
                              succ_e         0  [0, 0.875]
                              akg_e          0  [0, 0.745]
                              glu__L_e       0  [0, 0.673]






Similarly, variability in metabolite mass balances can also be checked
with flux variability analysis.



In [19]:






model.metabolites.pyr_c.summary(fva=0.95)













PRODUCING REACTIONS -- Pyruvate (pyr_c)
---------------------------------------
%       FLUX  RANGE         RXN ID      REACTION
----  ------  ------------  ----------  ----------------------------------------
50%       10  [1.25, 18.8]  PYK         adp_c + h_c + pep_c --> atp_c + pyr_c
50%       10  [9.5, 10]     GLCpts      glc__D_e + pep_c --> g6p_c + pyr_c
0%         0  [0, 8.75]     ME1         mal__L_c + nad_c --> co2_c + nadh_c +...
0%         0  [0, 8.75]     ME2         mal__L_c + nadp_c --> co2_c + nadph_c...

CONSUMING REACTIONS -- Pyruvate (pyr_c)
---------------------------------------
%       FLUX  RANGE         RXN ID      REACTION
----  ------  ------------  ----------  ----------------------------------------
100%      20  [13, 28.8]    PDH         coa_c + nad_c + pyr_c --> accoa_c + c...
0%         0  [0, 8.75]     PPS         atp_c + h2o_c + pyr_c --> amp_c + 2.0...
0%         0  [0, 5.83]     PFL         coa_c + pyr_c --> accoa_c + for_c
0%         0  [0, 1.35]     PYRt2       h_e + pyr_e <=> h_c + pyr_c
0%         0  [0, 1.13]     LDH_D       lac__D_c + nad_c <=> h_c + nadh_c + p...
0%         0  [0, 0.132]    Biomass...  1.496 3pg_c + 3.7478 accoa_c + 59.81 ...






In these summary methods, the values are reported as a the center point
+/- the range of the FVA solution, calculated from the maximum and
minimum values.






4.4. Running pFBA

Parsimonious FBA (often written pFBA) finds a flux distribution which
gives the optimal growth rate, but minimizes the total sum of flux. This
involves solving two sequential linear programs, but is handled
transparently by cobrapy. For more details on pFBA, please see Lewis et
al. (2010) [http://dx.doi.org/10.1038/msb.2010.47].



In [20]:






model.objective = 'Biomass_Ecoli_core'
fba_solution = model.optimize()
pfba_solution = cobra.flux_analysis.pfba(model)







These functions should give approximately the same objective value.



In [21]:






abs(fba_solution.fluxes["Biomass_Ecoli_core"] - pfba_solution.fluxes[
    "Biomass_Ecoli_core"])









Out[21]:






7.7715611723760958e-16













          

      

      

    

  

  
    
    5. Simulating Deletions
    

    
 
  
  

    
      
          
            
  


5. Simulating Deletions



In [1]:






import pandas
from time import time

import cobra.test
from cobra.flux_analysis import (
    single_gene_deletion, single_reaction_deletion, double_gene_deletion,
    double_reaction_deletion)

cobra_model = cobra.test.create_test_model("textbook")
ecoli_model = cobra.test.create_test_model("ecoli")








5.1. Knocking out single genes and reactions

A commonly asked question when analyzing metabolic models is what will
happen if a certain reaction was not allowed to have any flux at all.
This can tested using cobrapy by



In [2]:






print('complete model: ', cobra_model.optimize())
with cobra_model:
    cobra_model.reactions.PFK.knock_out()
    print('pfk knocked out: ', cobra_model.optimize())













complete model:  <Solution 0.874 at 0x1118cc898>
pfk knocked out:  <Solution 0.704 at 0x1118cc5c0>






For evaluating genetic manipulation strategies, it is more interesting
to examine what happens if given genes are knocked out as doing so can
affect no reactions in case of redundancy, or more reactions if gene
when is participating in more than one reaction.



In [3]:






print('complete model: ', cobra_model.optimize())
with cobra_model:
    cobra_model.genes.b1723.knock_out()
    print('pfkA knocked out: ', cobra_model.optimize())
    cobra_model.genes.b3916.knock_out()
    print('pfkB knocked out: ', cobra_model.optimize())













complete model:  <Solution 0.874 at 0x1108b81d0>
pfkA knocked out:  <Solution 0.874 at 0x1108b80b8>
pfkB knocked out:  <Solution 0.704 at 0x1108b8128>









5.2. Single Deletions

Perform all single gene deletions on a model



In [4]:






deletion_results = single_gene_deletion(cobra_model)







These can also be done for only a subset of genes



In [5]:






single_gene_deletion(cobra_model, cobra_model.genes[:20])









Out[5]:








  
    
      	
      	flux
      	status
    

  
  
    
      	b0116
      	0.782351
      	optimal
    

    
      	b0118
      	0.873922
      	optimal
    

    
      	b0351
      	0.873922
      	optimal
    

    
      	b0356
      	0.873922
      	optimal
    

    
      	b0474
      	0.873922
      	optimal
    

    
      	b0726
      	0.858307
      	optimal
    

    
      	b0727
      	0.858307
      	optimal
    

    
      	b1241
      	0.873922
      	optimal
    

    
      	b1276
      	0.873922
      	optimal
    

    
      	b1478
      	0.873922
      	optimal
    

    
      	b1849
      	0.873922
      	optimal
    

    
      	b2296
      	0.873922
      	optimal
    

    
      	b2587
      	0.873922
      	optimal
    

    
      	b3115
      	0.873922
      	optimal
    

    
      	b3732
      	0.374230
      	optimal
    

    
      	b3733
      	0.374230
      	optimal
    

    
      	b3734
      	0.374230
      	optimal
    

    
      	b3735
      	0.374230
      	optimal
    

    
      	b3736
      	0.374230
      	optimal
    

    
      	s0001
      	0.211141
      	optimal
    

  







This can also be done for reactions



In [6]:






single_reaction_deletion(cobra_model, cobra_model.reactions[:20])









Out[6]:








  
    
      	
      	flux
      	status
    

  
  
    
      	ACALD
      	8.739215e-01
      	optimal
    

    
      	ACALDt
      	8.739215e-01
      	optimal
    

    
      	ACKr
      	8.739215e-01
      	optimal
    

    
      	ACONTa
      	-5.039994e-13
      	optimal
    

    
      	ACONTb
      	-1.477823e-12
      	optimal
    

    
      	ACt2r
      	8.739215e-01
      	optimal
    

    
      	ADK1
      	8.739215e-01
      	optimal
    

    
      	AKGDH
      	8.583074e-01
      	optimal
    

    
      	AKGt2r
      	8.739215e-01
      	optimal
    

    
      	ALCD2x
      	8.739215e-01
      	optimal
    

    
      	ATPM
      	9.166475e-01
      	optimal
    

    
      	ATPS4r
      	3.742299e-01
      	optimal
    

    
      	Biomass_Ecoli_core
      	0.000000e+00
      	optimal
    

    
      	CO2t
      	4.616696e-01
      	optimal
    

    
      	CS
      	1.129472e-12
      	optimal
    

    
      	CYTBD
      	2.116629e-01
      	optimal
    

    
      	D_LACt2
      	8.739215e-01
      	optimal
    

    
      	ENO
      	1.161773e-14
      	optimal
    

    
      	ETOHt2r
      	8.739215e-01
      	optimal
    

    
      	EX_ac_e
      	8.739215e-01
      	optimal
    

  










5.3. Double Deletions

Double deletions run in a similar way. Passing in return_frame=True
will cause them to format the results as a pandas.DataFrame.



In [7]:






double_gene_deletion(
    cobra_model, cobra_model.genes[-5:], return_frame=True).round(4)









Out[7]:








  
    
      	
      	b2464
      	b0008
      	b2935
      	b2465
      	b3919
    

  
  
    
      	b2464
      	0.8739
      	0.8648
      	0.8739
      	0.8739
      	0.704
    

    
      	b0008
      	0.8648
      	0.8739
      	0.8739
      	0.8739
      	0.704
    

    
      	b2935
      	0.8739
      	0.8739
      	0.8739
      	0.0000
      	0.704
    

    
      	b2465
      	0.8739
      	0.8739
      	0.0000
      	0.8739
      	0.704
    

    
      	b3919
      	0.7040
      	0.7040
      	0.7040
      	0.7040
      	0.704
    

  







By default, the double deletion function will automatically use
multiprocessing, splitting the task over up to 4 cores if they are
available. The number of cores can be manually specified as well.
Setting use of a single core will disable use of the multiprocessing
library, which often aids debugging.



In [8]:






start = time()  # start timer()
double_gene_deletion(
    ecoli_model, ecoli_model.genes[:300], number_of_processes=2)
t1 = time() - start
print("Double gene deletions for 200 genes completed in "
      "%.2f sec with 2 cores" % t1)

start = time()  # start timer()
double_gene_deletion(
    ecoli_model, ecoli_model.genes[:300], number_of_processes=1)
t2 = time() - start
print("Double gene deletions for 200 genes completed in "
      "%.2f sec with 1 core" % t2)

print("Speedup of %.2fx" % (t2 / t1))













Double gene deletions for 200 genes completed in 33.26 sec with 2 cores
Double gene deletions for 200 genes completed in 45.38 sec with 1 core
Speedup of 1.36x






Double deletions can also be run for reactions.



In [9]:






double_reaction_deletion(
    cobra_model, cobra_model.reactions[2:7], return_frame=True).round(4)









Out[9]:








  
    
      	
      	ACKr
      	ACONTa
      	ACONTb
      	ACt2r
      	ADK1
    

  
  
    
      	ACKr
      	0.8739
      	0.0
      	0.0
      	0.8739
      	0.8739
    

    
      	ACONTa
      	0.0000
      	0.0
      	0.0
      	0.0000
      	0.0000
    

    
      	ACONTb
      	0.0000
      	0.0
      	0.0
      	0.0000
      	-0.0000
    

    
      	ACt2r
      	0.8739
      	0.0
      	0.0
      	0.8739
      	0.8739
    

    
      	ADK1
      	0.8739
      	0.0
      	-0.0
      	0.8739
      	0.8739
    

  













          

      

      

    

  

  
    
    6. Production envelopes
    

    
 
  
  

    
      
          
            
  


6. Production envelopes

Production envelopes (aka phenotype phase planes) will show distinct
phases of optimal growth with different use of two different substrates.
For more information, see Edwards et
al. [http://dx.doi.org/10.1002/bit.10047]

Cobrapy supports calculating these production envelopes and they can
easily be plotted using your favorite plotting package. Here, we will
make one for the “textbook” E. coli core model and demonstrate
plotting using matplotlib [http://matplotlib.org/].



In [1]:






import cobra.test
from cobra.flux_analysis import production_envelope

model = cobra.test.create_test_model("textbook")







We want to make a phenotype phase plane to evaluate uptakes of Glucose
and Oxygen.



In [2]:






prod_env = production_envelope(model, ["EX_glc__D_e", "EX_o2_e"])









In [3]:






prod_env.head()









Out[3]:








  
    
    7. Flux sampling
    

    
 
  
  

    
      
          
            
  


7. Flux sampling


7.1. Basic usage

The easiest way to get started with flux sampling is using the
sample function in the flux_analysis submodule. sample takes
at least two arguments: a cobra model and the number of samples you want
to generate.



In [1]:






from cobra.test import create_test_model
from cobra.flux_analysis import sample

model = create_test_model("textbook")
s = sample(model, 100)
s.head()









Out[1]:








  
    
      	
      	ACALD
      	ACALDt
      	ACKr
      	ACONTa
      	ACONTb
      	ACt2r
      	ADK1
      	AKGDH
      	AKGt2r
      	ALCD2x
      	...
      	RPI
      	SUCCt2_2
      	SUCCt3
      	SUCDi
      	SUCOAS
      	TALA
      	THD2
      	TKT1
      	TKT2
      	TPI
    

  
  
    
      	0
      	-3.706944
      	-0.163964
      	-0.295823
      	8.975852
      	8.975852
      	-0.295823
      	4.847986
      	6.406533
      	-0.081797
      	-3.542980
      	...
      	-1.649393
      	20.917568
      	20.977290
      	744.206008
      	-6.406533
      	1.639515
      	1.670533
      	1.639515
      	1.635542
      	6.256787
    

    
      	1
      	-1.340710
      	-0.175665
      	-0.429169
      	11.047827
      	11.047827
      	-0.429169
      	2.901598
      	7.992916
      	-0.230564
      	-1.165045
      	...
      	-0.066975
      	24.735567
      	24.850041
      	710.481004
      	-7.992916
      	0.056442
      	9.680476
      	0.056442
      	0.052207
      	7.184752
    

    
      	2
      	-1.964087
      	-0.160334
      	-0.618029
      	9.811474
      	9.811474
      	-0.618029
      	17.513791
      	8.635576
      	-0.284992
      	-1.803753
      	...
      	-4.075515
      	23.425719
      	23.470968
      	696.114154
      	-8.635576
      	4.063291
      	52.316496
      	4.063291
      	4.058376
      	5.122237
    

    
      	3
      	-0.838442
      	-0.123865
      	-0.376067
      	11.869552
      	11.869552
      	-0.376067
      	7.769872
      	9.765178
      	-0.325219
      	-0.714577
      	...
      	-0.838094
      	23.446704
      	23.913036
      	595.787313
      	-9.765178
      	0.822987
      	36.019720
      	0.822987
      	0.816912
      	8.364314
    

    
      	4
      	-0.232088
      	-0.034346
      	-1.067684
      	7.972039
      	7.972039
      	-1.067684
      	5.114975
      	5.438125
      	-0.787864
      	-0.197742
      	...
      	-3.109205
      	8.902309
      	9.888083
      	584.552692
      	-5.438125
      	3.088152
      	12.621811
      	3.088152
      	3.079686
      	6.185089
    

  


5 rows × 95 columns






By default sample uses the optgp method based on the method
presented here [http://dx.doi.org/10.1371/journal.pone.0086587] as it
is suited for larger models and can run in parallel. By default the
sampler uses a single process. This can be changed by using the
processes argument.



In [2]:






print("One process:")
%time s = sample(model, 1000)
print("Two processes:")
%time s = sample(model, 1000, processes=2)













One process:
CPU times: user 5.31 s, sys: 433 ms, total: 5.74 s
Wall time: 5.27 s
Two processes:
CPU times: user 217 ms, sys: 488 ms, total: 705 ms
Wall time: 2.8 s






Alternatively you can also user Artificial Centering Hit-and-Run for
sampling by setting the method to achr. achr does not support
parallel execution but has good convergence and is almost Markovian.



In [3]:






s = sample(model, 100, method="achr")







In general setting up the sampler is expensive since initial search
directions are generated by solving many linear programming problems.
Thus, we recommend to generate as many samples as possible in one go.
However, this might require finer control over the sampling procedure as
described in the following section.




7.2. Advanced usage


7.2.1. Sampler objects

The sampling process can be controlled on a lower level by using the
sampler classes directly.



In [4]:






from cobra.flux_analysis.sampling import OptGPSampler, ACHRSampler







Both sampler classes have standardized interfaces and take some
additional argument. For instance the thinning factor. “Thinning”
means only recording samples every n iterations. A higher thinning
factors mean less correlated samples but also larger computation times.
By default the samplers use a thinning factor of 100 which creates
roughly uncorrelated samples. If you want less samples but better mixing
feel free to increase this parameter. If you want to study convergence
for your own model you might want to set it to 1 to obtain all iterates.



In [5]:






achr = ACHRSampler(model, thinning=10)







OptGPSampler has an additional processes argument specifying how
many processes are used to create parallel sampling chains. This should
be in the order of your CPU cores for maximum efficiency. As noted
before class initialization can take up to a few minutes due to
generation of initial search directions. Sampling on the other hand is
quick.



In [6]:






optgp = OptGPSampler(model, processes=4)










7.2.2. Sampling and validation

Both samplers have a sample function that generates samples from the
initialized object and act like the sample function described above,
only that this time it will only accept a single argument, the number of
samples. For OptGPSampler the number of samples should be a multiple
of the number of processes, otherwise it will be increased to the
nearest multiple automatically.



In [7]:






s1 = achr.sample(100)

s2 = optgp.sample(100)







You can call sample repeatedly and both samplers are optimized to
generate large amount of samples without falling into “numerical traps”.
All sampler objects have a validate function in order to check if a
set of points are feasible and give detailed information about
feasibility violations in a form of a short code denoting feasibility.
Here the short code is a combination of any of the following letters:


	“v” - valid point


	“l” - lower bound violation


	“u” - upper bound violation


	“e” - equality violation (meaning the point is not a steady state)




For instance for a random flux distribution (should not be feasible):



In [8]:






import numpy as np

bad = np.random.uniform(-1000, 1000, size=len(model.reactions))
achr.validate(np.atleast_2d(bad))









Out[8]:






array(['le'],
      dtype='<U3')







And for our generated samples:



In [9]:






achr.validate(s1)









Out[9]:






array(['v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v',
       'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v',
       'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v',
       'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v',
       'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v',
       'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v',
       'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v',
       'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v', 'v'],
      dtype='<U3')










7.2.3. Batch sampling

Sampler objects are made for generating billions of samples, however
using the sample function might quickly fill up your RAM when
working with genome-scale models. Here, the batch method of the
sampler objects might come in handy. batch takes two arguments, the
number of samples in each batch and the number of batches. This will
make sense with a small example.

Let’s assume we want to quantify what proportion of our samples will
grow. For that we might want to generate 10 batches of 50 samples each
and measure what percentage of the individual 100 samples show a growth
rate larger than 0.1. Finally, we want to calculate the mean and
standard deviation of those individual percentages.



In [10]:






counts = [np.mean(s.Biomass_Ecoli_core > 0.1) for s in optgp.batch(100, 10)]
print("Usually {:.2f}% +- {:.2f}% grow...".format(
    np.mean(counts) * 100.0, np.std(counts) * 100.0))













Usually 8.70% +- 2.72% grow...











7.3. Adding constraints

Flux sampling will respect additional contraints defined in the model.
For instance we can add a constraint enforcing growth in asimilar manner
as the section before.



In [11]:






co = model.problem.Constraint(model.reactions.Biomass_Ecoli_core.flux_expression, lb=0.1)
model.add_cons_vars([co])







Note that this is only for demonstration purposes. usually you could
set the lower bound of the reaction directly instead of creating a new
constraint.



In [12]:






s = sample(model, 10)
print(s.Biomass_Ecoli_core)













0    0.175547
1    0.111499
2    0.123073
3    0.151874
4    0.122541
5    0.121878
6    0.147333
7    0.106499
8    0.174448
9    0.143273
Name: Biomass_Ecoli_core, dtype: float64






As we can see our new constraint was respected.







          

      

      

    

  

  
    
    8. Loopless FBA
    

    
 
  
  

    
      
          
            
  


8. Loopless FBA

The goal of this procedure is identification of a thermodynamically
consistent flux state without loops, as implied by the name. You can
find a more detailed description in the method section at
the end of the notebook.



In [1]:






%matplotlib inline
import plot_helper

import cobra.test
from cobra import Reaction, Metabolite, Model
from cobra.flux_analysis.loopless import add_loopless, loopless_solution
from cobra.flux_analysis import pfba








8.1. Loopless solution

Classical loopless approaches as described below are computationally
expensive to solve due to the added mixed-integer constraints. A much
faster, and pragmatic approach is instead to post-process flux
distributions to simply set fluxes to zero wherever they can be zero
without changing the fluxes of any exchange reactions in the model.
CycleFreeFlux [http://dx.doi.org/10.1093/bioinformatics/btv096] is
an algorithm that can be used to achieve this and in cobrapy it is
implemented in the cobra.flux_analysis.loopless_solution function.
loopless_solution will identify the closest flux distribution (using
only loopless elementary flux modes) to the original one. Note that this
will not remove loops which you explicitly requested, for instance by
forcing a loop reaction to carry non-zero flux.

Using a larger model than the simple example above, this can be
demonstrated as follows



In [2]:






salmonella = cobra.test.create_test_model('salmonella')
nominal = salmonella.optimize()
loopless = loopless_solution(salmonella)









In [3]:






import pandas
df = pandas.DataFrame(dict(loopless=loopless.fluxes, nominal=nominal.fluxes))









In [4]:






df.plot.scatter(x='loopless', y='nominal')









Out[4]:






<matplotlib.axes._subplots.AxesSubplot at 0x10f7cb3c8>












[image: _images/loopless_7_1.png]




This functionality can also be used in FVA by using the
loopless=True argument to avoid getting high flux ranges for
reactions that essentially only can reach high fluxes if they are
allowed to participate in loops (see the simulation notebook) leading to
much narrower flux ranges.




8.2. Loopless model

Cobrapy also includes the “classical” loopless formulation by
Schellenberger et.
al. [https://dx.doi.org/10.1016%2Fj.bpj.2010.12.3707] implemented in
cobra.flux_analysis.add_loopless modify the model with additional
mixed-integer constraints that make thermodynamically infeasible loops
impossible. This is much slower than the strategy provided above and
should only be used if one of the two following cases applies:


	You want to combine a non-linear (e.g. quadratic) objective with the
loopless condition


	You want to force the model to be infeasible in the presence of loops
independent of the set reaction bounds.




We will demonstrate this with a toy model which has a simple loop
cycling A \(\rightarrow\) B \(\rightarrow\) C
\(\rightarrow\) A, with A allowed to enter the system and C allowed
to leave. A graphical view of the system is drawn below:



In [5]:






plot_helper.plot_loop()












[image: _images/loopless_11_0.png]






In [6]:






model = Model()
model.add_metabolites([Metabolite(i) for i in "ABC"])
model.add_reactions([Reaction(i) for i in ["EX_A", "DM_C", "v1", "v2", "v3"]])

model.reactions.EX_A.add_metabolites({"A": 1})
model.reactions.DM_C.add_metabolites({"C": -1})

model.reactions.v1.add_metabolites({"A": -1, "B": 1})
model.reactions.v2.add_metabolites({"B": -1, "C": 1})
model.reactions.v3.add_metabolites({"C": -1, "A": 1})

model.objective = 'DM_C'







While this model contains a loop, a flux state exists which has no flux
through reaction v\(_3\), and is identified by loopless FBA.



In [7]:






with model:
    add_loopless(model)
    solution = model.optimize()
print("loopless solution: status = " + solution.status)
print("loopless solution flux: v3 = %.1f" % solution.fluxes["v3"])













loopless solution: status = optimal
loopless solution flux: v3 = 0.0






If there is no forced flux through a loopless reaction, parsimonious FBA
will also have no flux through the loop.



In [8]:






solution = pfba(model)
print("parsimonious solution: status = " + solution.status)
print("loopless solution flux: v3 = %.1f" % solution.fluxes["v3"])













parsimonious solution: status = optimal
loopless solution flux: v3 = 0.0






However, if flux is forced through v\(_3\), then there is no
longer a feasible loopless solution, but the parsimonious solution will
still exist.



In [9]:






model.reactions.v3.lower_bound = 1
with model:
    add_loopless(model)
    try:
        solution = model.optimize()
    except:
        print('model is infeasible')













model is infeasible












cobra/util/solver.py:398 UserWarning: solver status is 'infeasible'








In [10]:






solution = pfba(model)
print("parsimonious solution: status = " + solution.status)
print("loopless solution flux: v3 = %.1f" % solution.fluxes["v3"])













parsimonious solution: status = optimal
loopless solution flux: v3 = 1.0









8.3. Method

loopless_solution is based on a given reference flux distribution.
It will look for a new flux distribution with the following
requirements:


	The objective value is the same as in the reference fluxes.


	All exchange fluxes have the same value as in the reference
distribution.


	All non-exchange fluxes have the same sign (flow in the same
direction) as the reference fluxes.


	The sum of absolute non-exchange fluxes is minimized.




As proven in the original
publication [http://dx.doi.org/10.1093/bioinformatics/btv096] this
will identify the “least-loopy” solution closest to the reference
fluxes.

If you are using add_loopless this will use the method described
here [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030201/]. In
summary, it will add \(G \approx \Delta G\) proxy variables and make
loops thermodynamically infeasible. This is achieved by the following
formulation.


\[\begin{split}\begin{eqnarray}
&\text{maximize } v_{obj} \\
s.t. & Sv = 0\\
& lb_j \leq v_j \leq ub_j \\
& -M\cdot (1 - a_i) \leq v_i \leq M\cdot a_i\\
& -1000a_i + (1 - a_i) \leq G_i \leq -a_i + 1000(1 - a_i)\\
& N_{int}G = 0\\
& a_i \in \{0, 1\}
\end{eqnarray}\end{split}\]

Here the index j runs over all reactions and the index i only over
internal ones. \(a_i\) are indicator variables which equal one if
the reaction flux flows in hte forward direction and 0 otherwise. They
are used to force the G proxies to always carry the opposite sign of the
flux (as it is the case for the “real” \(\Delta G\) values).
\(N_{int}\) is the nullspace matrix for internal reactions and is
used to find thermodinamically “correct” values for G.







          

      

      

    

  

  
    
    9. Gapfillling
    

    
 
  
  

    
      
          
            
  


9. Gapfillling

Model gap filling is the task of figuring out which reactions have to be
added to a model to make it feasible. Several such algorithms have been
reported e.g. Kumar et al.
2009 [http://dx.doi.org/10.1371/journal.pcbi.1000308] and Reed et
al. 2006 [http://www.pnas.org/content/103/46/17480.short]. Cobrapy
has a gap filling implementation that is very similar to that of Reed et
al. where we use a mixed-integer linear program to figure out the
smallest number of reactions that need to be added for a user-defined
collection of reactions, i.e. a universal model. Briefly, the problem
that we try to solve is

Minimize:


\[\sum_i c_i * z_i\]

subject to


\[Sv = 0\]


\[v^\star \geq t\]


\[l_i\leq v_i \leq u_i\]


\[v_i = 0 \textrm{ if } z_i = 0\]

Where l, u are lower and upper bounds for reaction i and z is an
indicator variable that is zero if the reaction is not used and
otherwise 1, c is a user-defined cost associated with using the
ith reaction, \(v^\star\) is the flux of the objective and t a
lower bound for that objective. To demonstrate, let’s take a model and
remove some essential reactions from it.



In [1]:






import cobra.test
from cobra.flux_analysis import gapfill
model = cobra.test.create_test_model("salmonella")







In this model D-Fructose-6-phosphate is an essential metabolite. We will
remove all the reactions using it, and at them to a separate model.



In [2]:






universal = cobra.Model("universal_reactions")
for i in [i.id for i in model.metabolites.f6p_c.reactions]:
    reaction = model.reactions.get_by_id(i)
    universal.add_reaction(reaction.copy())
    model.remove_reactions([reaction])







Now, because of these gaps, the model won’t grow.



In [3]:






model.optimize().objective_value









Out[3]:






0.0







We will use can use the model’s original objective, growth, to figure
out which of the removed reactions are required for the model be
feasible again. This is very similar to making the ‘no-growth but growth
(NGG)’ predictions of Kumar et al.
2009 [http://dx.doi.org/10.1371/journal.pcbi.1000308].



In [4]:






solution = gapfill(model, universal, demand_reactions=False)
for reaction in solution[0]:
    print(reaction.id)













GF6PTA
F6PP
TKT2
FBP
MAN6PI






We can obtain multiple possible reaction sets by having the algorithm go
through multiple iterations.



In [5]:






result = gapfill(model, universal, demand_reactions=False, iterations=4)
for i, entries in enumerate(result):
    print("---- Run %d ----" % (i + 1))
    for e in entries:
        print(e.id)













---- Run 1 ----
GF6PTA
F6PP
TKT2
FBP
MAN6PI
---- Run 2 ----
GF6PTA
TALA
PGI
F6PA
MAN6PI
---- Run 3 ----
GF6PTA
F6PP
TKT2
FBP
MAN6PI
---- Run 4 ----
GF6PTA
TALA
PGI
F6PA
MAN6PI






We can also instead of using the original objective, specify a given
metabolite that we want the model to be able to produce.



In [6]:






with model:
    model.objective = model.add_boundary(model.metabolites.f6p_c, type='demand')
    solution = gapfill(model, universal)
    for reaction in solution[0]:
        print(reaction.id)













FBP






Finally, note that using mixed-integer linear programming is
computationally quite expensive and for larger models you may want to
consider alternative gap filling
methods [http://opencobra.github.io/cobrapy/tags/gapfilling/] and
reconstruction
methods [http://opencobra.github.io/cobrapy/tags/reconstruction/].





          

      

      

    

  

  
    
    10. Solvers
    

    
 
  
  

    
      
          
            
  


10. Solvers

A constraints-based reconstruction and analysis model for biological
systems is actually just an application of a class of discrete
optimization problems typically solved with linear, mixed
integer [https://en.wikipedia.org/wiki/Linear_programming] or
quadratic
programming [https://en.wikipedia.org/wiki/Quadratic_programming]
techniques. Cobrapy does not implement any algorithms to find solutions
to such problems but rather creates an biologically motivated
abstraction to these techniques to make it easier to think of how
metabolic systems work without paying much attention to how that
formulates to an optimization problem.

The actual solving is instead done by tools such as the free software
glpk [https://www.gnu.org/software/glpk/] or commercial tools
gurobi [http://www.gurobi.com/] and
cplex [https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/]
which are all made available as a common programmers interface via the
optlang [https://github.com/biosustain/optlang] package.

When you have defined your model, you can switch solver backend by
simply assigning to the model.solver property.



In [1]:






import cobra.test
model = cobra.test.create_test_model('textbook')









In [2]:






model.solver = 'glpk'
# or if you have cplex installed
model.solver = 'cplex'







For information on how to configure and tune the solver, please see the
documentation for optlang project [http://optlang.readthedocs.io]
and note that model.solver is simply an object optlang of class
Model.



In [3]:






type(model.solver)









Out[3]:






optlang.cplex_interface.Model








10.1. Internal solver interfaces

Cobrapy also contains its own solver interfaces but these are now
deprecated and will be removed completely in the near future. For
documentation of how to use these, please refer to older
documentation [http://cobrapy.readthedocs.io/en/0.5.11/].







          

      

      

    

  

  
    
    11. Tailored constraints, variables and objectives
    

    
 
  
  

    
      
          
            
  


11. Tailored constraints, variables and objectives

Thanks to the use of symbolic expressions via the optlang mathematical
modeling package, it is relatively straight-forward to add new
variables, constraints and advanced objectives that can not easily be
formulated as a combination of different reaction and their
corresponding upper and lower bounds. Here we demonstrate this optlang
functionality which is exposed via the model.solver.interface.


11.1. Constraints

Suppose we want to ensure that two reactions have the same flux in our
model. We can add this criteria as constraint to our model using the
optlang solver interface by simply defining the relevant expression as
follows.



In [1]:






import cobra.test
model = cobra.test.create_test_model('textbook')









In [2]:






same_flux = model.problem.Constraint(
    model.reactions.FBA.flux_expression - model.reactions.NH4t.flux_expression,
    lb=0,
    ub=0)
model.add_cons_vars(same_flux)







The flux for our reaction of interest is obtained by the
model.reactions.FBA.flux_expression which is simply the sum of the
forward and reverse flux, i.e.,



In [3]:






model.reactions.FBA.flux_expression









Out[3]:






1.0*FBA - 1.0*FBA_reverse_84806







Now I can maximize growth rate whilst the fluxes of reactions ‘FBA’ and
‘NH4t’ are constrained to be (near) identical.



In [4]:






solution = model.optimize()
print(solution.fluxes['FBA'], solution.fluxes['NH4t'],
      solution.objective_value)













4.66274904774 4.66274904774 0.855110960926157









11.2. Objectives

Simple objective such as the maximization of the flux through one or
more reactions can conveniently be done by simply assigning to the
model.objective property as we have seen in previous chapters, e.g.,



In [5]:






model = cobra.test.create_test_model('textbook')
with model:
    model.objective = {model.reactions.Biomass_Ecoli_core: 1}
    model.optimize()
    print(model.reactions.Biomass_Ecoli_core.flux)













0.8739215069684307






The objectives mathematical expression is seen by



In [6]:






model.objective.expression









Out[6]:






-1.0*Biomass_Ecoli_core_reverse_2cdba + 1.0*Biomass_Ecoli_core







But suppose we need a more complicated objective, such as minimizing the
Euclidean distance of the solution to the origin minus another variable,
while subject to additional linear constraints. This is an objective
function with both linear and quadratic components.

Consider the example problem:


min \(\frac{1}{2}\left(x^2 + y^2 \right) - y\)

subject to

\(x + y = 2\)

\(x \ge 0\)

\(y \ge 0\)




This (admittedly very artificial) problem can be visualized graphically
where the optimum is indicated by the blue dot on the line of feasible
solutions.



In [7]:






%matplotlib inline
import plot_helper

plot_helper.plot_qp2()












[image: _images/constraints_objectives_17_0.png]




We return to the textbook model and set the solver to one that can
handle quadratic objectives such as cplex. We then add the linear
constraint that the sum of our x and y reactions, that we set to FBA and
NH4t, must equal 2.



In [8]:






model.solver = 'cplex'
sum_two = model.problem.Constraint(
    model.reactions.FBA.flux_expression + model.reactions.NH4t.flux_expression,
    lb=2,
    ub=2)
model.add_cons_vars(sum_two)







Next we add the quadratic objective



In [9]:






quadratic_objective = model.problem.Objective(
    0.5 * model.reactions.NH4t.flux_expression**2 + 0.5 *
    model.reactions.FBA.flux_expression**2 -
    model.reactions.FBA.flux_expression,
    direction='min')
model.objective = quadratic_objective
solution = model.optimize(objective_sense=None)









In [10]:






print(solution.fluxes['NH4t'], solution.fluxes['FBA'])













0.5 1.5









11.3. Variables

We can also create additional variables to facilitate studying the
effects of new constraints and variables. Suppose we want to study the
difference in flux between nitrogen and carbon uptake whilst we block
other reactions. For this it will may help to add another variable
representing this difference.



In [11]:






model = cobra.test.create_test_model('textbook')
difference = model.problem.Variable('difference')







We use constraints to define what values this variable shall take



In [12]:






constraint = model.problem.Constraint(
    model.reactions.EX_glc__D_e.flux_expression -
    model.reactions.EX_nh4_e.flux_expression - difference,
    lb=0,
    ub=0)
model.add_cons_vars([difference, constraint])







Now we can access that difference directly during our knock-out
exploration by looking at its primal value.



In [13]:






for reaction in model.reactions[:5]:
    with model:
        reaction.knock_out()
        model.optimize()
        print(model.solver.variables.difference.primal)













-5.234680806802543
-5.2346808068025386
-5.234680806802525
-1.8644444444444337
-1.8644444444444466












          

      

      

    

  

  
    
    12. Using the COBRA toolbox with cobrapy
    

    
 
  
  

    
      
          
            
  


12. Using the COBRA toolbox with cobrapy

This example demonstrates using COBRA toolbox commands in MATLAB from
python through
pymatbridge [http://arokem.github.io/python-matlab-bridge/].



In [1]:






%load_ext pymatbridge













Starting MATLAB on ZMQ socket ipc:///tmp/pymatbridge-57ff5429-02d9-4e1a-8ed0-44e391fb0df7
Send 'exit' command to kill the server
....MATLAB started and connected!








In [2]:






import cobra.test
m = cobra.test.create_test_model("textbook")







The model_to_pymatbridge function will send the model to the workspace
with the given variable name.



In [3]:






from cobra.io.mat import model_to_pymatbridge
model_to_pymatbridge(m, variable_name="model")







Now in the MATLAB workspace, the variable name ‘model’ holds a COBRA
toolbox struct encoding the model.



In [4]:






%%matlab
model













model =

            rev: [95x1 double]
       metNames: {72x1 cell}
              b: [72x1 double]
      metCharge: [72x1 double]
              c: [95x1 double]
         csense: [72x1 char]
          genes: {137x1 cell}
    metFormulas: {72x1 cell}
           rxns: {95x1 cell}
        grRules: {95x1 cell}
       rxnNames: {95x1 cell}
    description: [11x1 char]
              S: [72x95 double]
             ub: [95x1 double]
             lb: [95x1 double]
           mets: {72x1 cell}
     subSystems: {95x1 cell}









First, we have to initialize the COBRA toolbox in MATLAB.



In [5]:






%%matlab --silent
warning('off'); % this works around a pymatbridge bug
addpath(genpath('~/cobratoolbox/'));
initCobraToolbox();







Commands from the COBRA toolbox can now be run on the model



In [6]:






%%matlab
optimizeCbModel(model)













ans =

           x: [95x1 double]
           f: 0.8739
           y: [71x1 double]
           w: [95x1 double]
        stat: 1
    origStat: 5
      solver: 'glpk'
        time: 3.2911









FBA in the COBRA toolbox should give the same result as cobrapy (but
maybe just a little bit slower :))



In [7]:






%time
m.optimize().f













CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: 5.48 µs








Out[7]:






0.8739215069684909











          

      

      

    

  

  
    
    13. FAQ
    

    
 
  
  

    
      
          
            
  


13. FAQ

This document will address frequently asked questions not addressed in
other pages of the documentation.


13.1. How do I install cobrapy?

Please see the
INSTALL.rst [https://github.com/opencobra/cobrapy/blob/master/INSTALL.rst]
file.




13.2. How do I cite cobrapy?

Please cite the 2013 publication:
10.1186/1752-0509-7-74 [http://dx.doi.org/doi:10.1186/1752-0509-7-74]




13.3. How do I rename reactions or metabolites?

TL;DR Use Model.repair afterwards

When renaming metabolites or reactions, there are issues because cobra
indexes based off of ID’s, which can cause errors. For example:



In [1]:






from __future__ import print_function
import cobra.test
model = cobra.test.create_test_model()

for metabolite in model.metabolites:
    metabolite.id = "test_" + metabolite.id

try:
    model.metabolites.get_by_id(model.metabolites[0].id)
except KeyError as e:
    print(repr(e))







The Model.repair function will rebuild the necessary indexes



In [2]:






model.repair()
model.metabolites.get_by_id(model.metabolites[0].id)









Out[2]:







    
        	Metabolite identifier	test_dcaACP_c
    

    
        	Name	Decanoyl-ACP-n-C100ACP
    

    
  
    
    14. cobra
    

    
 
  
  

    
      
          
            
  


14. cobra



	14.1. cobra package
	14.1.1. Subpackages

	14.1.2. Submodules

	14.1.3. Module contents













          

      

      

    

  

  
    
    14.1. cobra package
    

    
 
  
  

    
      
          
            
  


14.1. cobra package


14.1.1. Subpackages



	14.1.1.1. cobra.core package
	14.1.1.1.1. Submodules
	14.1.1.1.1.1. cobra.core.dictlist module

	14.1.1.1.1.2. cobra.core.formula module

	14.1.1.1.1.3. cobra.core.gene module

	14.1.1.1.1.4. cobra.core.metabolite module

	14.1.1.1.1.5. cobra.core.model module

	14.1.1.1.1.6. cobra.core.object module

	14.1.1.1.1.7. cobra.core.reaction module

	14.1.1.1.1.8. cobra.core.solution module

	14.1.1.1.1.9. cobra.core.species module





	14.1.1.1.2. Module contents





	14.1.1.2. cobra.flux_analysis package
	14.1.1.2.1. Submodules
	14.1.1.2.1.1. cobra.flux_analysis.deletion module

	14.1.1.2.1.2. cobra.flux_analysis.gapfilling module

	14.1.1.2.1.3. cobra.flux_analysis.loopless module

	14.1.1.2.1.4. cobra.flux_analysis.moma module

	14.1.1.2.1.5. cobra.flux_analysis.parsimonious module

	14.1.1.2.1.6. cobra.flux_analysis.phenotype_phase_plane module

	14.1.1.2.1.7. cobra.flux_analysis.reaction module

	14.1.1.2.1.8. cobra.flux_analysis.sampling module

	14.1.1.2.1.9. cobra.flux_analysis.summary module

	14.1.1.2.1.10. cobra.flux_analysis.variability module





	14.1.1.2.2. Module contents





	14.1.1.3. cobra.io package
	14.1.1.3.1. Submodules
	14.1.1.3.1.1. cobra.io.dict module

	14.1.1.3.1.2. cobra.io.json module

	14.1.1.3.1.3. cobra.io.mat module

	14.1.1.3.1.4. cobra.io.sbml module

	14.1.1.3.1.5. cobra.io.sbml3 module

	14.1.1.3.1.6. cobra.io.yaml module





	14.1.1.3.2. Module contents





	14.1.1.4. cobra.manipulation package
	14.1.1.4.1. Submodules
	14.1.1.4.1.1. cobra.manipulation.annotate module

	14.1.1.4.1.2. cobra.manipulation.delete module

	14.1.1.4.1.3. cobra.manipulation.modify module

	14.1.1.4.1.4. cobra.manipulation.validate module





	14.1.1.4.2. Module contents





	14.1.1.5. cobra.test package
	14.1.1.5.1. Submodules
	14.1.1.5.1.1. cobra.test.conftest module

	14.1.1.5.1.2. cobra.test.test_flux_analysis module

	14.1.1.5.1.3. cobra.test.test_io module

	14.1.1.5.1.4. cobra.test.test_io_order module

	14.1.1.5.1.5. cobra.test.test_manipulation module

	14.1.1.5.1.6. cobra.test.test_model module

	14.1.1.5.1.7. cobra.test.test_solver_model module

	14.1.1.5.1.8. cobra.test.test_solver_utils module

	14.1.1.5.1.9. cobra.test.test_util module





	14.1.1.5.2. Module contents





	14.1.1.6. cobra.util package
	14.1.1.6.1. Submodules
	14.1.1.6.1.1. cobra.util.array module

	14.1.1.6.1.2. cobra.util.context module

	14.1.1.6.1.3. cobra.util.solver module

	14.1.1.6.1.4. cobra.util.util module

	14.1.1.6.1.5. cobra.util.version_info module





	14.1.1.6.2. Module contents












14.1.2. Submodules



	14.1.2.1. cobra.config module

	14.1.2.2. cobra.exceptions module








14.1.3. Module contents







          

      

      

    

  

  
    
    14.1.1.1. cobra.core package
    

    
 
  
  

    
      
          
            
  


14.1.1.1. cobra.core package


14.1.1.1.1. Submodules



	14.1.1.1.1.1. cobra.core.dictlist module

	14.1.1.1.1.2. cobra.core.formula module

	14.1.1.1.1.3. cobra.core.gene module

	14.1.1.1.1.4. cobra.core.metabolite module

	14.1.1.1.1.5. cobra.core.model module

	14.1.1.1.1.6. cobra.core.object module

	14.1.1.1.1.7. cobra.core.reaction module

	14.1.1.1.1.8. cobra.core.solution module

	14.1.1.1.1.9. cobra.core.species module








14.1.1.1.2. Module contents







          

      

      

    

  

  
    
    14.1.1.1.1.1. cobra.core.dictlist module
    

    
 
  
  

    
      
          
            
  


14.1.1.1.1.1. cobra.core.dictlist module


	
class cobra.core.dictlist.DictList(*args)

	Bases: list

A combined dict and list

This object behaves like a list, but has the O(1) speed
benefits of a dict when looking up elements by their id.


	
add(x)

	Opposite of remove. Mirrors set.add






	
append(object)

	append object to end






	
extend(iterable)

	extend list by appending elements from the iterable






	
get_by_any(iterable)

	Get a list of members using several different ways of indexing


	Parameters

	iterable (list (if not, turned into single element list)) – list where each element is either int (referring to an index in
in this DictList), string (a id of a member in this DictList) or
member of this DictList for pass-through



	Returns

	a list of members



	Return type

	list










	
get_by_id(id)

	return the element with a matching id






	
has_id(id)

	




	
index(id, *args)

	Determine the position in the list

id: A string or a Object






	
insert(index, object)

	insert object before index






	
list_attr(attribute)

	return a list of the given attribute for every object






	
pop(*args)

	remove and return item at index (default last).






	
query(search_function, attribute=None)

	Query the list


	Parameters

	
	search_function (a string, regular expression or function) – Used to find the matching elements in the list.
- a regular expression (possibly compiled), in which case the
given attribute of the object should match the regular expression.
- a function which takes one argument and returns True for
desired values


	attribute (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None]) – the name attribute of the object to passed as argument to the
search_function. If this is None, the object itself is used.






	Returns

	a new list of objects which match the query



	Return type

	DictList





Examples

>>> import cobra.test
>>> model = cobra.test.create_test_model('textbook')
>>> model.reactions.query(lambda x: x.boundary)
>>> import re
>>> regex = re.compile('^g', flags=re.IGNORECASE)
>>> model.metabolites.query(regex, attribute='name')










	
remove(x)

	
Warning

Internal use only








	
reverse()

	reverse IN PLACE






	
sort(cmp=None, key=None, reverse=False)

	stable sort IN PLACE

cmp(x, y) -> -1, 0, 1






	
union(iterable)

	adds elements with id’s not already in the model













          

      

      

    

  

  
    
    14.1.1.1.1.2. cobra.core.formula module
    

    
 
  
  

    
      
          
            
  


14.1.1.1.1.2. cobra.core.formula module


	
class cobra.core.formula.Formula(formula=None)

	Bases: cobra.core.object.Object

Describes a Chemical Formula


	Parameters

	formula (string [https://docs.python.org/2/library/string.html#module-string]) – A legal formula string contains only letters and numbers.






	
parse_composition()

	Breaks the chemical formula down by element.






	
weight

	Calculate the mol mass of the compound


	Returns

	the mol mass



	Return type

	float [https://docs.python.org/2/library/functions.html#float]

















          

      

      

    

  

  
    
    14.1.1.1.1.3. cobra.core.gene module
    

    
 
  
  

    
      
          
            
  


14.1.1.1.1.3. cobra.core.gene module


	
class cobra.core.gene.GPRCleaner

	Bases: ast.NodeTransformer [https://docs.python.org/2/library/ast.html#ast.NodeTransformer]

Parses compiled ast of a gene_reaction_rule and identifies genes

Parts of the tree are rewritten to allow periods in gene ID’s and
bitwise boolean operations


	
visit_BinOp(node)

	




	
visit_Name(node)

	








	
class cobra.core.gene.Gene(id=None, name='', functional=True)

	Bases: cobra.core.species.Species

A Gene in a cobra model


	Parameters

	
	id (string [https://docs.python.org/2/library/string.html#module-string]) – The identifier to associate the gene with


	name (string [https://docs.python.org/2/library/string.html#module-string]) – A longer human readable name for the gene


	functional (bool [https://docs.python.org/2/library/functions.html#bool]) – Indicates whether the gene is functional.  If it is not functional
then it cannot be used in an enzyme complex nor can its products be
used.









	
functional

	A flag indicating if the gene is functional.

Changing the flag is reverted upon exit if executed within the model
as context.






	
knock_out()

	Knockout gene by marking it as non-functional and setting all
associated reactions bounds to zero.

The change is reverted upon exit if executed within the model as
context.






	
remove_from_model(model=None, make_dependent_reactions_nonfunctional=True)

	Removes the association


	Parameters

	
	model (cobra model) – The model to remove the gene from


	make_dependent_reactions_nonfunctional (bool [https://docs.python.org/2/library/functions.html#bool]) – If True then replace the gene with ‘False’ in the gene
association, else replace the gene with ‘True’









Deprecated since version 0.4: Use cobra.manipulation.delete_model_genes to simulate knockouts
and cobra.manipulation.remove_genes to remove genes from
the model.












	
cobra.core.gene.ast2str(expr, level=0, names=None)

	convert compiled ast to gene_reaction_rule str


	Parameters

	
	expr (str [https://docs.python.org/2/library/functions.html#str]) – string for a gene reaction rule, e.g “a and b”


	level (int [https://docs.python.org/2/library/functions.html#int]) – internal use only


	names (dict) – Dict where each element id a gene identifier and the value is the
gene name. Use this to get a rule str which uses names instead. This
should be done for display purposes only. All gene_reaction_rule
strings which are computed with should use the id.






	Returns

	The gene reaction rule



	Return type

	string [https://docs.python.org/2/library/string.html#module-string]










	
cobra.core.gene.eval_gpr(expr, knockouts)

	evaluate compiled ast of gene_reaction_rule with knockouts


	Parameters

	
	expr (Expression) – The ast of the gene reaction rule


	knockouts (DictList, set [https://docs.python.org/2/library/stdtypes.html#set]) – Set of genes that are knocked out






	Returns

	True if the gene reaction rule is true with the given knockouts
otherwise false



	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]










	
cobra.core.gene.parse_gpr(str_expr)

	parse gpr into AST


	Parameters

	str_expr (string [https://docs.python.org/2/library/string.html#module-string]) – string with the gene reaction rule to parse



	Returns

	elements ast_tree and gene_ids as a set



	Return type

	tuple [https://docs.python.org/2/library/functions.html#tuple]













          

      

      

    

  

  
    
    14.1.1.1.1.4. cobra.core.metabolite module
    

    
 
  
  

    
      
          
            
  


14.1.1.1.1.4. cobra.core.metabolite module


	
class cobra.core.metabolite.Metabolite(id=None, formula=None, name='', charge=None, compartment=None)

	Bases: cobra.core.species.Species

Metabolite is a class for holding information regarding
a metabolite in a cobra.Reaction object.


	Parameters

	
	id (str [https://docs.python.org/2/library/functions.html#str]) – the identifier to associate with the metabolite


	formula (str [https://docs.python.org/2/library/functions.html#str]) – Chemical formula (e.g. H2O)


	name (str [https://docs.python.org/2/library/functions.html#str]) – A human readable name.


	charge (float [https://docs.python.org/2/library/functions.html#float]) – The charge number of the metabolite


	compartment (str [https://docs.python.org/2/library/functions.html#str] or None [https://docs.python.org/2/library/constants.html#None]) – Compartment of the metabolite.









	
constraint

	Get the constraints associated with this metabolite from the solve


	Returns

	the optlang constraint for this metabolite



	Return type

	optlang.<interface>.Constraint










	
elements

	Dictionary of elements as keys and their count in the metabolite
as integer. When set, the formula property is update accordingly






	
formula_weight

	Calculate the formula weight






	
remove_from_model(destructive=False)

	Removes the association from self.model

The change is reverted upon exit when using the model as a context.


	Parameters

	destructive (bool [https://docs.python.org/2/library/functions.html#bool]) – If False then the metabolite is removed from all
associated reactions.  If True then all associated
reactions are removed from the Model.










	
shadow_price

	The shadow price in the most recent solution.

Shadow price is the dual value of the corresponding constraint in the
model.


Warning


	Accessing shadow prices through a Solution object is the safer,
preferred, and only guaranteed to be correct way. You can see how to
do so easily in the examples.


	Shadow price is retrieved from the currently defined
self._model.solver. The solver status is checked but there are no
guarantees that the current solver state is the one you are looking
for.


	If you modify the underlying model after an optimization, you will
retrieve the old optimization values.







	Raises

	
	RuntimeError – If the underlying model was never optimized beforehand or the
metabolite is not part of a model.


	OptimizationError – If the solver status is anything other than ‘optimal’.








Examples

>>> import cobra
>>> import cobra.test
>>> model = cobra.test.create_test_model("textbook")
>>> solution = model.optimize()
>>> model.metabolites.glc__D_e.shadow_price
-0.09166474637510488
>>> solution.shadow_prices.glc__D_e
-0.091664746375104883










	
summary(solution=None, threshold=0.01, fva=False, floatfmt='.3g')

	Print a summary of the reactions which produce and consume this
metabolite.

This method requires the model for which this metabolite is a part
to be solved.


	Parameters

	
	solution (cobra.core.Solution) – A previously solved model solution to use for generating the
summary. If none provided (default), the summary method will
resolve the model. Note that the solution object must match the
model, i.e., changes to the model such as changed bounds,
added or removed reactions are not taken into account by this
method.


	threshold (float [https://docs.python.org/2/library/functions.html#float]) – a value below which to ignore reaction fluxes


	fva (float [https://docs.python.org/2/library/functions.html#float] (0->1), or None [https://docs.python.org/2/library/constants.html#None]) – Whether or not to include flux variability analysis in the output.
If given, fva should be a float between 0 and 1, representing the
fraction of the optimum objective to be searched.


	floatfmt (string [https://docs.python.org/2/library/string.html#module-string]) – format method for floats, passed to tabulate. Default is ‘.3g’.













	
y

	The shadow price for the metabolite in the most recent solution

Shadow prices are computed from the dual values of the bounds in
the solution.













          

      

      

    

  

  
    
    14.1.1.1.1.5. cobra.core.model module
    

    
 
  
  

    
      
          
            
  


14.1.1.1.1.5. cobra.core.model module


	
class cobra.core.model.Model(id_or_model=None, name=None)

	Bases: cobra.core.object.Object

Class representation for a cobra model


	Parameters

	
	id_or_model (Model, string [https://docs.python.org/2/library/string.html#module-string]) – Either an existing Model object in which case a new model object is
instantiated with the same properties as the original model,
or a the identifier to associate with the model as a string.


	name (string [https://docs.python.org/2/library/string.html#module-string]) – Human readable name for the model









	
reactions

	DictList – A DictList where the key is the reaction identifier and the value a
Reaction






	
metabolites

	DictList – A DictList where the key is the metabolite identifier and the value a
Metabolite






	
genes

	DictList – A DictList where the key is the gene identifier and the value a
Gene






	
solution

	Solution – The last obtained solution from optimizing the model.






	
add_boundary(metabolite, type='exchange', reaction_id=None, lb=None, ub=1000.0)

	Add a boundary reaction for a given metabolite.

There are three different types of pre-defined boundary reactions:
exchange, demand, and sink reactions.
An exchange reaction is a reversible, imbalanced reaction that adds
to or removes an extracellular metabolite from the extracellular
compartment.
A demand reaction is an irreversible reaction that consumes an
intracellular metabolite.
A sink is similar to an exchange but specifically for intracellular
metabolites.

If you set the reaction type to something else, you must specify the
desired identifier of the created reaction along with its upper and
lower bound. The name will be given by the metabolite name and the
given type.


	Parameters

	
	metabolite (cobra.Metabolite) – Any given metabolite. The compartment is not checked but you are
encouraged to stick to the definition of exchanges and sinks.


	type (str [https://docs.python.org/2/library/functions.html#str], {"exchange", "demand", "sink"}) – Using one of the pre-defined reaction types is easiest. If you
want to create your own kind of boundary reaction choose
any other string, e.g., ‘my-boundary’.


	reaction_id (str [https://docs.python.org/2/library/functions.html#str], optional) – The ID of the resulting reaction. Only used for custom reactions.


	lb (float [https://docs.python.org/2/library/functions.html#float], optional) – The lower bound of the resulting reaction. Only used for custom
reactions.


	ub (float [https://docs.python.org/2/library/functions.html#float], optional) – The upper bound of the resulting reaction. For the pre-defined
reactions this default value determines all bounds.






	Returns

	The created boundary reaction.



	Return type

	cobra.Reaction





Examples

>>> import cobra.test
>>> model = cobra.test.create_test_model("textbook")
>>> demand = model.add_boundary(model.metabolites.atp_c, type="demand")
>>> demand.id
'DM_atp_c'
>>> demand.name
'ATP demand'
>>> demand.bounds
(0, 1000.0)
>>> demand.build_reaction_string()
'atp_c --> '










	
add_cons_vars(what, **kwargs)

	Add constraints and variables to the model’s mathematical problem.

Useful for variables and constraints that can not be expressed with
reactions and simple lower and upper bounds.

Additions are reversed upon exit if the model itself is used as
context.


	Parameters

	
	what (list or tuple of optlang variables or constraints.) – The variables or constraints to add to the model. Must be of
class optlang.interface.Variable or
optlang.interface.Constraint.


	**kwargs (keyword arguments) – Passed to solver.add()













	
add_metabolites(metabolite_list)

	Will add a list of metabolites to the model object and add new
constraints accordingly.

The change is reverted upon exit when using the model as a context.


	Parameters

	metabolite_list (A list of cobra.core.Metabolite objects) – 










	
add_reaction(reaction)

	Will add a cobra.Reaction object to the model, if
reaction.id is not in self.reactions.


	Parameters

	
	reaction (cobra.Reaction) – The reaction to add


	(0.6) Use ~cobra.Model.add_reactions instead (Deprecated) – 













	
add_reactions(reaction_list)

	Add reactions to the model.

Reactions with identifiers identical to a reaction already in the
model are ignored.

The change is reverted upon exit when using the model as a context.


	Parameters

	reaction_list (list) – A list of cobra.Reaction objects










	
compartments

	




	
constraints

	The constraints in the cobra model.

In a cobra model, most constraints are metabolites and their
stoichiometries. However, for specific use cases, it may also be
useful to have other types of constraints. This property defines all
constraints currently associated with the model’s problem.


	Returns

	A container with all associated constraints.



	Return type

	optlang.container.Container










	
copy()

	Provides a partial ‘deepcopy’ of the Model.  All of the Metabolite,
Gene, and Reaction objects are created anew but in a faster fashion
than deepcopy






	
description

	




	
exchanges

	Exchange reactions in model.

Reactions that either don’t have products or substrates.






	
get_metabolite_compartments()

	Return all metabolites’ compartments.






	
medium

	




	
merge(right, prefix_existing=None, inplace=True, objective='left')

	Merge two models to create a model with the reactions from both
models.

Custom constraints and variables from right models are also copied
to left model, however note that, constraints and variables are
assumed to be the same if they have the same name.


	rightcobra.Model

	The model to add reactions from



	prefix_existingstring

	Prefix the reaction identifier in the right that already exist
in the left model with this string.



	inplacebool

	Add reactions from right directly to left model object.
Otherwise, create a new model leaving the left model untouched.
When done within the model as context, changes to the models are
reverted upon exit.



	objectivestring

	One of ‘left’, ‘right’ or ‘sum’ for setting the objective of the
resulting model to that of the corresponding model or the sum of
both.










	
objective

	Get or set the solver objective

Before introduction of the optlang based problems,
this function returned the objective reactions as a list. With
optlang, the objective is not limited a simple linear summation of
individual reaction fluxes, making that return value ambiguous.
Henceforth, use cobra.util.solver.linear_reaction_coefficients to
get a dictionary of reactions with their linear coefficients (empty
if there are none)

The set value can be dictionary (reactions as keys, linear
coefficients as values), string (reaction identifier), int (reaction
index), Reaction or problem.Objective or sympy expression
directly interpreted as objectives.

When using a HistoryManager context, this attribute can be set
temporarily, reversed when the exiting the context.






	
objective_direction

	Get or set the objective direction.

When using a HistoryManager context, this attribute can be set
temporarily, reversed when exiting the context.






	
optimize(objective_sense=None, raise_error=False)

	Optimize the model using flux balance analysis.


	Parameters

	
	objective_sense ({None, 'maximize' 'minimize'}, optional) – Whether fluxes should be maximized or minimized. In case of None,
the previous direction is used.


	raise_error (bool [https://docs.python.org/2/library/functions.html#bool]) – 
	If true, raise an OptimizationError if solver status is not

	optimal.














Notes

Only the most commonly used parameters are presented here.  Additional
parameters for cobra.solvers may be available and specified with the
appropriate keyword argument.






	
problem

	The interface to the model’s underlying mathematical problem.

Solutions to cobra models are obtained by formulating a mathematical
problem and solving it. Cobrapy uses the optlang package to
accomplish that and with this property you can get access to the
problem interface directly.


	Returns

	The problem interface that defines methods for interacting with
the problem and associated solver directly.



	Return type

	optlang.interface










	
remove_cons_vars(what)

	Remove variables and constraints from the model’s mathematical
problem.

Remove variables and constraints that were added directly to the
model’s underlying mathematical problem. Removals are reversed
upon exit if the model itself is used as context.


	Parameters

	what (list or tuple of optlang variables or constraints.) – The variables or constraints to add to the model. Must be of
class optlang.interface.Variable or
optlang.interface.Constraint.










	
remove_metabolites(metabolite_list, destructive=False)

	Remove a list of metabolites from the the object.

The change is reverted upon exit when using the model as a context.


	Parameters

	
	metabolite_list (list) – A list with cobra.Metabolite objects as elements.


	destructive (bool [https://docs.python.org/2/library/functions.html#bool]) – If False then the metabolite is removed from all
associated reactions.  If True then all associated
reactions are removed from the Model.













	
remove_reactions(reactions, remove_orphans=False)

	Remove reactions from the model.

The change is reverted upon exit when using the model as a context.


	Parameters

	
	reactions (list) – A list with reactions (cobra.Reaction), or their id’s, to remove


	remove_orphans (bool [https://docs.python.org/2/library/functions.html#bool]) – Remove orphaned genes and metabolites from the model as well













	
repair(rebuild_index=True, rebuild_relationships=True)

	Update all indexes and pointers in a model


	Parameters

	
	rebuild_index (bool [https://docs.python.org/2/library/functions.html#bool]) – rebuild the indices kept in reactions, metabolites and genes


	rebuild_relationships (bool [https://docs.python.org/2/library/functions.html#bool]) – reset all associations between genes, metabolites, model and
then re-add them.













	
slim_optimize(error_value=nan, message=None)

	Optimize model without creating a solution object.

Creating a full solution object implies fetching shadow prices and
flux values for all reactions and metabolites from the solver
object. This necessarily takes some time and in cases where only one
or two values are of interest, it is recommended to instead use this
function which does not create a solution object returning only the
value of the objective. Note however that the optimize() function
uses efficient means to fetch values so if you need fluxes/shadow
prices for more than say 4 reactions/metabolites, then the total
speed increase of slim_optimize versus optimize is  expected to
be small or even negative depending on how you fetch the values
after optimization.


	Parameters

	
	error_value (float [https://docs.python.org/2/library/functions.html#float], None [https://docs.python.org/2/library/constants.html#None]) – The value to return if optimization failed due to e.g.
infeasibility. If None, raise OptimizationError if the
optimization fails.


	message (string [https://docs.python.org/2/library/string.html#module-string]) – Error message to use if the model optimization did not succeed.






	Returns

	The objective value.



	Return type

	float [https://docs.python.org/2/library/functions.html#float]










	
solver

	Get or set the attached solver instance.

The associated the solver object, which manages the interaction with
the associated solver, e.g. glpk.

This property is useful for accessing the optimization problem
directly and to define additional non-metabolic constraints.

Examples

>>> import cobra.test
>>> model = cobra.test.create_test_model("textbook")
>>> new = model.problem.Constraint(model.objective.expression,
>>> lb=0.99)
>>> model.solver.add(new)










	
summary(solution=None, threshold=1e-08, fva=None, floatfmt='.3g')

	Print a summary of the input and output fluxes of the model. This
method requires the model to have been previously solved.


	Parameters

	
	solution (cobra.core.Solution) – A previously solved model solution to use for generating the
summary. If none provided (default), the summary method will
resolve the model. Note that the solution object must match the
model, i.e., changes to the model such as changed bounds,
added or removed reactions are not taken into account by this
method.


	threshold (float [https://docs.python.org/2/library/functions.html#float]) – tolerance for determining if a flux is zero (not printed)


	fva (int [https://docs.python.org/2/library/functions.html#int] or None [https://docs.python.org/2/library/constants.html#None]) – Whether or not to calculate and report flux variability in the
output summary


	floatfmt (string [https://docs.python.org/2/library/string.html#module-string]) – format method for floats, passed to tabulate. Default is ‘.3g’.













	
variables

	The mathematical variables in the cobra model.

In a cobra model, most variables are reactions. However,
for specific use cases, it may also be useful to have other types of
variables. This property defines all variables currently associated
with the model’s problem.


	Returns

	A container with all associated variables.



	Return type

	optlang.container.Container

















          

      

      

    

  

  
    
    14.1.1.1.1.6. cobra.core.object module
    

    
 
  
  

    
      
          
            
  


14.1.1.1.1.6. cobra.core.object module


	
class cobra.core.object.Object(id=None, name='')

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Defines common behavior of object in cobra.core


	
id

	











          

      

      

    

  

  
    
    14.1.1.1.1.7. cobra.core.reaction module
    

    
 
  
  

    
      
          
            
  


14.1.1.1.1.7. cobra.core.reaction module


	
class cobra.core.reaction.Reaction(id=None, name='', subsystem='', lower_bound=0.0, upper_bound=1000.0, objective_coefficient=0.0)

	Bases: cobra.core.object.Object

Reaction is a class for holding information regarding
a biochemical reaction in a cobra.Model object.


	Parameters

	
	id (string [https://docs.python.org/2/library/string.html#module-string]) – The identifier to associate with this reaction


	name (string [https://docs.python.org/2/library/string.html#module-string]) – A human readable name for the reaction


	subsystem (string [https://docs.python.org/2/library/string.html#module-string]) – Subsystem where the reaction is meant to occur


	lower_bound (float [https://docs.python.org/2/library/functions.html#float]) – The lower flux bound


	upper_bound (float [https://docs.python.org/2/library/functions.html#float]) – The upper flux bound









	
add_metabolites(metabolites_to_add, combine=True, reversibly=True)

	Add metabolites and stoichiometric coefficients to the reaction.
If the final coefficient for a metabolite is 0 then it is removed
from the reaction.

The change is reverted upon exit when using the model as a context.


	Parameters

	
	metabolites_to_add (dict) – Dictionary with metabolite objects or metabolite identifiers as
keys and coefficients as values. If keys are strings (name of a
metabolite) the reaction must already be part of a model and a
metabolite with the given name must exist in the model.


	combine (bool [https://docs.python.org/2/library/functions.html#bool]) – Describes behavior a metabolite already exists in the reaction.
True causes the coefficients to be added.
False causes the coefficient to be replaced.


	reversibly (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether to add the change to the context to make the change
reversibly or not (primarily intended for internal use).













	
boundary

	Whether or not this reaction is an exchange reaction.

Returns True if the reaction has either no products or reactants.






	
bounds

	Get or set the bounds directly from a tuple

Convenience method for setting upper and lower bounds in one line
using a tuple of lower and upper bound. Invalid bounds will raise an
AssertionError.

When using a HistoryManager context, this attribute can be set
temporarily, reversed when the exiting the context.






	
build_reaction_from_string(reaction_str, verbose=True, fwd_arrow=None, rev_arrow=None, reversible_arrow=None, term_split='+')

	Builds reaction from reaction equation reaction_str using parser

Takes a string and using the specifications supplied in the optional
arguments infers a set of metabolites, metabolite compartments and
stoichiometries for the reaction.  It also infers the reversibility
of the reaction from the reaction arrow.

Changes to the associated model are reverted upon exit when using
the model as a context.


	Parameters

	
	reaction_str (string [https://docs.python.org/2/library/string.html#module-string]) – a string containing a reaction formula (equation)


	verbose (bool [https://docs.python.org/2/library/functions.html#bool]) – setting verbosity of function


	fwd_arrow (re.compile [https://docs.python.org/2/library/re.html#re.compile]) – for forward irreversible reaction arrows


	rev_arrow (re.compile [https://docs.python.org/2/library/re.html#re.compile]) – for backward irreversible reaction arrows


	reversible_arrow (re.compile [https://docs.python.org/2/library/re.html#re.compile]) – for reversible reaction arrows


	term_split (string [https://docs.python.org/2/library/string.html#module-string]) – dividing individual metabolite entries













	
build_reaction_string(use_metabolite_names=False)

	Generate a human readable reaction string






	
check_mass_balance()

	Compute mass and charge balance for the reaction

returns a dict of {element: amount} for unbalanced elements.
“charge” is treated as an element in this dict
This should be empty for balanced reactions.






	
compartments

	lists compartments the metabolites are in






	
copy()

	Copy a reaction

The referenced metabolites and genes are also copied.






	
delete(remove_orphans=False)

	Removes the reaction from a model.

This removes all associations between a reaction the associated
model, metabolites and genes.

The change is reverted upon exit when using the model as a context.

Deprecated, use reaction.remove_from_model instead.


	Parameters

	remove_orphans (bool [https://docs.python.org/2/library/functions.html#bool]) – Remove orphaned genes and metabolites from the model as well










	
flux

	The flux value in the most recent solution.

Flux is the primal value of the corresponding variable in the model.


Warning


	Accessing reaction fluxes through a Solution object is the safer,
preferred, and only guaranteed to be correct way. You can see how to
do so easily in the examples.


	Reaction flux is retrieved from the currently defined
self._model.solver. The solver status is checked but there are no
guarantees that the current solver state is the one you are looking
for.


	If you modify the underlying model after an optimization, you will
retrieve the old optimization values.







	Raises

	
	RuntimeError – If the underlying model was never optimized beforehand or the
reaction is not part of a model.


	OptimizationError – If the solver status is anything other than ‘optimal’.


	AssertionError – If the flux value is not within the bounds.








Examples

>>> import cobra.test
>>> model = cobra.test.create_test_model("textbook")
>>> solution = model.optimize()
>>> model.reactions.PFK.flux
7.477381962160283
>>> solution.fluxes.PFK
7.4773819621602833










	
flux_expression

	Forward flux expression


	Returns

	The expression representing the the forward flux (if associated
with model), otherwise None. Representing the net flux if
model.reversible_encoding == ‘unsplit’ or None if reaction is
not associated with a model



	Return type

	sympy expression










	
forward_variable

	An optlang variable representing the forward flux


	Returns

	An optlang variable for the forward flux or None if reaction is
not associated with a model.



	Return type

	optlang.interface.Variable










	
functional

	All required enzymes for reaction are functional.


	Returns

	True if the gene-protein-reaction (GPR) rule is fulfilled for
this reaction, or if reaction is not associated to a model,
otherwise False.



	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]










	
gene_name_reaction_rule

	Display gene_reaction_rule with names intead.

Do NOT use this string for computation. It is intended to give a
representation of the rule using more familiar gene names instead of
the often cryptic ids.






	
gene_reaction_rule

	




	
genes

	




	
get_coefficient(metabolite_id)

	Return the stoichiometric coefficient of a metabolite.


	Parameters

	metabolite_id (str [https://docs.python.org/2/library/functions.html#str] or cobra.Metabolite) – 










	
get_coefficients(metabolite_ids)

	Return the stoichiometric coefficients for a list of metabolites.


	Parameters

	metabolite_ids (iterable) – Containing str or ``cobra.Metabolite``s.










	
get_compartments()

	lists compartments the metabolites are in






	
knock_out()

	Knockout reaction by setting its bounds to zero.






	
lower_bound

	Get or set the lower bound

Setting the lower bound (float) will also adjust the associated optlang
variables associated with the reaction. Infeasible combinations,
such as a lower bound higher than the current upper bound will
update the other bound.

When using a HistoryManager context, this attribute can be set
temporarily, reversed when the exiting the context.






	
metabolites

	




	
model

	returns the model the reaction is a part of






	
objective_coefficient

	Get the coefficient for this reaction in a linear
objective (float)

Assuming that the objective of the associated model is summation of
fluxes from a set of reactions, the coefficient for each reaction
can be obtained individually using this property. A more general way
is to use the model.objective property directly.






	
products

	Return a list of products for the reaction






	
reactants

	Return a list of reactants for the reaction.






	
reaction

	Human readable reaction string






	
reduced_cost

	The reduced cost in the most recent solution.

Reduced cost is the dual value of the corresponding variable in the
model.


Warning


	Accessing reduced costs through a Solution object is the safer,
preferred, and only guaranteed to be correct way. You can see how to
do so easily in the examples.


	Reduced cost is retrieved from the currently defined
self._model.solver. The solver status is checked but there are no
guarantees that the current solver state is the one you are looking
for.


	If you modify the underlying model after an optimization, you will
retrieve the old optimization values.







	Raises

	
	RuntimeError – If the underlying model was never optimized beforehand or the
reaction is not part of a model.


	OptimizationError – If the solver status is anything other than ‘optimal’.








Examples

>>> import cobra.test
>>> model = cobra.test.create_test_model("textbook")
>>> solution = model.optimize()
>>> model.reactions.PFK.reduced_cost
-8.673617379884035e-18
>>> solution.reduced_costs.PFK
-8.6736173798840355e-18










	
remove_from_model(remove_orphans=False)

	Removes the reaction from a model.

This removes all associations between a reaction the associated
model, metabolites and genes.

The change is reverted upon exit when using the model as a context.


	Parameters

	remove_orphans (bool [https://docs.python.org/2/library/functions.html#bool]) – Remove orphaned genes and metabolites from the model as well










	
reverse_id

	Generate the id of reverse_variable from the reaction’s id.






	
reverse_variable

	An optlang variable representing the reverse flux


	Returns

	An optlang variable for the reverse flux or None if reaction is
not associated with a model.



	Return type

	optlang.interface.Variable










	
reversibility

	Whether the reaction can proceed in both directions (reversible)

This is computed from the current upper and lower bounds.






	
subtract_metabolites(metabolites, combine=True, reversibly=True)

	Subtract metabolites from a reaction.

That means add the metabolites with -1*coefficient. If the final
coefficient for a metabolite is 0 then the metabolite is removed from
the reaction.

Notes


	A final coefficient < 0 implies a reactant.


	The change is reverted upon exit when using the model as a context.





	Parameters

	
	metabolites (dict) – Dictionary where the keys are of class Metabolite and the values
are the coefficients. These metabolites will be added to the
reaction.


	combine (bool [https://docs.python.org/2/library/functions.html#bool]) – Describes behavior a metabolite already exists in the reaction.
True causes the coefficients to be added.
False causes the coefficient to be replaced.


	reversibly (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether to add the change to the context to make the change
reversibly or not (primarily intended for internal use).













	
upper_bound

	Get or set the upper bound

Setting the upper bound (float) will also adjust the associated optlang
variables associated with the reaction. Infeasible combinations,
such as a upper bound lower than the current lower bound will
update the other bound.

When using a HistoryManager context, this attribute can be set
temporarily, reversed when the exiting the context.






	
x

	The flux through the reaction in the most recent solution.

Flux values are computed from the primal values of the variables in
the solution.






	
y

	The reduced cost of the reaction in the most recent solution.

Reduced costs are computed from the dual values of the variables in
the solution.










	
cobra.core.reaction.separate_forward_and_reverse_bounds(lower_bound, upper_bound)

	Split a given (lower_bound, upper_bound) interval into a negative
component and a positive component. Negative components are negated
(returns positive ranges) and flipped for usage with forward and reverse
reactions bounds


	Parameters

	
	lower_bound (float [https://docs.python.org/2/library/functions.html#float]) – The lower flux bound


	upper_bound (float [https://docs.python.org/2/library/functions.html#float]) – The upper flux bound













	
cobra.core.reaction.update_forward_and_reverse_bounds(reaction, direction='both')

	For the given reaction, update the bounds in the forward and
reverse variable bounds.


	Parameters

	
	reaction (cobra.Reaction) – The reaction to operate on


	direction (string [https://docs.python.org/2/library/string.html#module-string]) – Either ‘both’, ‘upper’ or ‘lower’ for updating the corresponding flux
bounds.
















          

      

      

    

  

  
    
    14.1.1.1.1.8. cobra.core.solution module
    

    
 
  
  

    
      
          
            
  


14.1.1.1.1.8. cobra.core.solution module

Provide unified interfaces to optimization solutions.


	
class cobra.core.solution.Solution(objective_value, status, fluxes, reduced_costs=None, shadow_prices=None, **kwargs)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A unified interface to a cobra.Model optimization solution.

Notes

Solution is meant to be constructed by get_solution please look at that
function to fully understand the Solution class.


	
objective_value

	float – The (optimal) value for the objective function.






	
status

	str – The solver status related to the solution.






	
fluxes

	pandas.Series – Contains the reaction fluxes (primal values of variables).






	
reduced_costs

	pandas.Series – Contains reaction reduced costs (dual values of variables).






	
shadow_prices

	pandas.Series – Contains metabolite shadow prices (dual values of constraints).






	
Deprecated Attributes

	




	
---------------------

	




	
f

	float – Use objective_value instead.






	
x

	list – Use fluxes.values instead.






	
x_dict

	pandas.Series – Use fluxes instead.






	
y

	list – Use reduced_costs.values instead.






	
y_dict

	pandas.Series – Use reduced_costs instead.






	
f

	Deprecated property for getting the objective value.






	
get_primal_by_id(reaction_id)

	Return the flux of a reaction.


	Parameters

	reaction (str [https://docs.python.org/2/library/functions.html#str]) – A model reaction ID.










	
to_frame()

	Return the fluxes and reduced costs as a data frame






	
x

	Deprecated property for getting flux values.






	
x_dict

	Deprecated property for getting fluxes.






	
y

	Deprecated property for getting reduced cost values.






	
y_dict

	Deprecated property for getting reduced costs.










	
class cobra.core.solution.LegacySolution(f, x=None, x_dict=None, y=None, y_dict=None, solver=None, the_time=0, status='NA', **kwargs)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Legacy support for an interface to a cobra.Model optimization solution.


	
f

	float – The objective value






	
solver

	str – A string indicating which solver package was used.






	
x

	iterable – List or Array of the fluxes (primal values).






	
x_dict

	dict – A dictionary of reaction IDs that maps to the respective primal values.






	
y

	iterable – List or Array of the dual values.






	
y_dict

	dict – A dictionary of reaction IDs that maps to the respective dual values.






Warning

The LegacySolution class and its interface is deprecated.




	
dress_results(model)

	Method could be intended as a decorator.


Warning

deprecated












	
cobra.core.solution.get_solution(model, reactions=None, metabolites=None, raise_error=False)

	Generate a solution representation of the current solver state.


	Parameters

	
	model (cobra.Model) – The model whose reactions to retrieve values for.


	reactions (list, optional) – An iterable of cobra.Reaction objects. Uses model.reactions by
default.


	metabolites (list, optional) – An iterable of cobra.Metabolite objects. Uses model.metabolites by
default.


	raise_error (bool [https://docs.python.org/2/library/functions.html#bool]) – If true, raise an OptimizationError if solver status is not optimal.






	Returns

	



	Return type

	cobra.Solution






Note

This is only intended for the optlang solver interfaces and not the
legacy solvers.











          

      

      

    

  

  
    
    14.1.1.1.1.9. cobra.core.species module
    

    
 
  
  

    
      
          
            
  


14.1.1.1.1.9. cobra.core.species module


	
class cobra.core.species.Species(id=None, name=None)

	Bases: cobra.core.object.Object

Species is a class for holding information regarding
a chemical Species


	Parameters

	
	id (string [https://docs.python.org/2/library/string.html#module-string]) – An identifier for the chemical species


	name (string [https://docs.python.org/2/library/string.html#module-string]) – A human readable name.









	
copy()

	When copying a reaction, it is necessary to deepcopy the
components so the list references aren’t carried over.

Additionally, a copy of a reaction is no longer in a cobra.Model.

This should be fixed with self.__deepcopy__ if possible






	
model

	




	
reactions

	











          

      

      

    

  

  
    
    14.1.1.2. cobra.flux_analysis package
    

    
 
  
  

    
      
          
            
  


14.1.1.2. cobra.flux_analysis package


14.1.1.2.1. Submodules



	14.1.1.2.1.1. cobra.flux_analysis.deletion module

	14.1.1.2.1.2. cobra.flux_analysis.gapfilling module

	14.1.1.2.1.3. cobra.flux_analysis.loopless module

	14.1.1.2.1.4. cobra.flux_analysis.moma module

	14.1.1.2.1.5. cobra.flux_analysis.parsimonious module

	14.1.1.2.1.6. cobra.flux_analysis.phenotype_phase_plane module

	14.1.1.2.1.7. cobra.flux_analysis.reaction module

	14.1.1.2.1.8. cobra.flux_analysis.sampling module

	14.1.1.2.1.9. cobra.flux_analysis.summary module

	14.1.1.2.1.10. cobra.flux_analysis.variability module








14.1.1.2.2. Module contents







          

      

      

    

  

  
    
    14.1.1.2.1.1. cobra.flux_analysis.deletion module
    

    
 
  
  

    
      
          
            
  


14.1.1.2.1.1. cobra.flux_analysis.deletion module


	
cobra.flux_analysis.deletion.double_gene_deletion(model, gene_list1=None, gene_list2=None, method='fba', processes=None)

	Knock out each gene pair from the combination of two given lists.

We say ‘pair’ here but the order order does not matter.


	Parameters

	
	model (cobra.Model) – The metabolic model to perform deletions in.


	gene_list1 (iterable, optional) – First iterable of ``cobra.Gene``s to be deleted. If not passed,
all the genes from the model are used.


	gene_list2 (iterable, optional) – Second iterable of ``cobra.Gene``s to be deleted. If not passed,
all the genes from the model are used.


	method ({"fba", "moma", "linear moma"}, optional) – Method used to predict the growth rate.


	processes (int [https://docs.python.org/2/library/functions.html#int], optional) – The number of parallel processes to run. Can speed up the computations
if the number of knockouts to perform is large. If not passed,
will be set to the number of CPUs found.






	Returns

	A representation of all combinations of gene deletions. The
columns are ‘growth’ and ‘status’, where


	indexfrozenset([str])

	The gene identifiers that were knocked out.



	growthfloat

	The growth rate of the adjusted model.



	statusstr

	The solution’s status.









	Return type

	pandas.DataFrame










	
cobra.flux_analysis.deletion.double_reaction_deletion(model, reaction_list1=None, reaction_list2=None, method='fba', processes=None)

	Knock out each reaction pair from the combinations of two given lists.

We say ‘pair’ here but the order order does not matter.


	Parameters

	
	model (cobra.Model) – The metabolic model to perform deletions in.


	reaction_list1 (iterable, optional) – First iterable of ``cobra.Reaction``s to be deleted. If not passed,
all the reactions from the model are used.


	reaction_list2 (iterable, optional) – Second iterable of ``cobra.Reaction``s to be deleted. If not passed,
all the reactions from the model are used.


	method ({"fba", "moma", "linear moma"}, optional) – Method used to predict the growth rate.


	processes (int [https://docs.python.org/2/library/functions.html#int], optional) – The number of parallel processes to run. Can speed up the computations
if the number of knockouts to perform is large. If not passed,
will be set to the number of CPUs found.






	Returns

	A representation of all combinations of reaction deletions. The
columns are ‘growth’ and ‘status’, where


	indexfrozenset([str])

	The reaction identifiers that were knocked out.



	growthfloat

	The growth rate of the adjusted model.



	statusstr

	The solution’s status.









	Return type

	pandas.DataFrame










	
cobra.flux_analysis.deletion.single_gene_deletion(model, gene_list=None, method='fba', processes=None)

	Knock out each gene from a given list.


	Parameters

	
	model (cobra.Model) – The metabolic model to perform deletions in.


	gene_list (iterable) – ``cobra.Gene``s to be deleted. If not passed,
all the genes from the model are used.


	method ({"fba", "moma", "linear moma"}, optional) – Method used to predict the growth rate.


	processes (int [https://docs.python.org/2/library/functions.html#int], optional) – The number of parallel processes to run. Can speed up the computations
if the number of knockouts to perform is large. If not passed,
will be set to the number of CPUs found.






	Returns

	A representation of all single gene deletions. The columns are
‘growth’ and ‘status’, where


	indexfrozenset([str])

	The gene identifier that was knocked out.



	growthfloat

	The growth rate of the adjusted model.



	statusstr

	The solution’s status.









	Return type

	pandas.DataFrame










	
cobra.flux_analysis.deletion.single_reaction_deletion(model, reaction_list=None, method='fba', processes=None)

	Knock out each reaction from a given list.


	Parameters

	
	model (cobra.Model) – The metabolic model to perform deletions in.


	reaction_list (iterable) – ``cobra.Reaction``s to be deleted. If not passed,
all the reactions from the model are used.


	method ({"fba", "moma", "linear moma"}, optional) – Method used to predict the growth rate.


	processes (int [https://docs.python.org/2/library/functions.html#int], optional) – The number of parallel processes to run. Can speed up the computations
if the number of knockouts to perform is large. If not passed,
will be set to the number of CPUs found.






	Returns

	A representation of all single reaction deletions. The columns are
‘growth’ and ‘status’, where


	indexfrozenset([str])

	The reaction identifier that was knocked out.



	growthfloat

	The growth rate of the adjusted model.



	statusstr

	The solution’s status.









	Return type

	pandas.DataFrame













          

      

      

    

  

  
    
    14.1.1.2.1.2. cobra.flux_analysis.gapfilling module
    

    
 
  
  

    
      
          
            
  


14.1.1.2.1.2. cobra.flux_analysis.gapfilling module


	
class cobra.flux_analysis.gapfilling.GapFiller(model, universal=None, lower_bound=0.05, penalties=None, exchange_reactions=False, demand_reactions=True, integer_threshold=1e-06)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Class for performing gap filling.

This class implements gap filling based on a mixed-integer approach,
very similar to that described in 1 and the ‘no-growth but growth’
part of [2]_ but with minor adjustments. In short, we add indicator
variables for using the reactions in the universal model, z_i and then
solve problem

minimize sum_i c_i * z_i
s.t. Sv = 0


v_o >= t
lb_i <= v_i <= ub_i
v_i = 0 if z_i = 0




where lb, ub are the upper, lower flux bounds for reaction i, c_i is a
cost parameter and the objective v_o is greater than the lower bound t.
The default costs are 1 for reactions from the universal model, 100 for
exchange (uptake) reactions added and 1 for added demand reactions.

Note that this is a mixed-integer linear program and as such will
expensive to solve for large models. Consider using alternatives [3]_
such as CORDA instead [4,5]_.


	Parameters

	
	model (cobra.Model) – The model to perform gap filling on.


	universal (cobra.Model) – A universal model with reactions that can be used to complete the
model.


	lower_bound (float [https://docs.python.org/2/library/functions.html#float]) – The minimally accepted flux for the objective in the filled model.


	penalties (dict, None [https://docs.python.org/2/library/constants.html#None]) – A dictionary with keys being ‘universal’ (all reactions included in
the universal model), ‘exchange’ and ‘demand’ (all additionally
added exchange and demand reactions) for the three reaction types.
Can also have reaction identifiers for reaction specific costs.
Defaults are 1, 100 and 1 respectively.


	integer_threshold (float [https://docs.python.org/2/library/functions.html#float]) – The threshold at which a value is considered non-zero (aka
integrality threshold). If gapfilled models fail to validate,
you may want to lower this value.


	exchange_reactions (bool [https://docs.python.org/2/library/functions.html#bool]) – Consider adding exchange (uptake) reactions for all metabolites
in the model.


	demand_reactions (bool [https://docs.python.org/2/library/functions.html#bool]) – Consider adding demand reactions for all metabolites.








References


	1

	Reed, Jennifer L., Trina R. Patel, Keri H. Chen, Andrew R. Joyce,
Margaret K. Applebee, Christopher D. Herring, Olivia T. Bui, Eric M.
Knight, Stephen S. Fong, and Bernhard O. Palsson. “Systems Approach
to Refining Genome Annotation.” Proceedings of the National Academy
of Sciences 103, no. 46 (2006): 17480–17484.

[2] Kumar, Vinay Satish, and Costas D. Maranas. “GrowMatch: An
Automated Method for Reconciling In Silico/In Vivo Growth
Predictions.” Edited by Christos A. Ouzounis. PLoS Computational
Biology 5, no. 3 (March 13, 2009): e1000308.
doi:10.1371/journal.pcbi.1000308.

[3] http://opencobra.github.io/cobrapy/tags/gapfilling/

[4] Schultz, André, and Amina A. Qutub. “Reconstruction of
Tissue-Specific Metabolic Networks Using CORDA.” Edited by Costas D.
Maranas. PLOS Computational Biology 12, no. 3 (March 4, 2016):
e1004808. doi:10.1371/journal.pcbi.1004808.

[5] Diener, Christian https://github.com/cdiener/corda






	
add_switches_and_objective()

	Update gapfilling model with switches and the indicator objective.






	
extend_model(exchange_reactions=False, demand_reactions=True)

	Extend gapfilling model.

Add reactions from universal model and optionally exchange and
demand reactions for all metabolites in the model to perform
gapfilling on.


	Parameters

	
	exchange_reactions (bool [https://docs.python.org/2/library/functions.html#bool]) – Consider adding exchange (uptake) reactions for all metabolites
in the model.


	demand_reactions (bool [https://docs.python.org/2/library/functions.html#bool]) – Consider adding demand reactions for all metabolites.













	
fill(iterations=1)

	Perform the gapfilling by iteratively solving the model, updating
the costs and recording the used reactions.


	Parameters

	iterations (int [https://docs.python.org/2/library/functions.html#int]) – The number of rounds of gapfilling to perform. For every
iteration, the penalty for every used reaction increases
linearly. This way, the algorithm is encouraged to search for
alternative solutions which may include previously used
reactions. I.e., with enough iterations pathways including 10
steps will eventually be reported even if the shortest pathway
is a single reaction.



	Returns

	A list of lists where each element is a list reactions that were
used to gapfill the model.



	Return type

	iterable



	Raises

	RuntimeError – If the model fails to be validated (i.e. the original model with
the proposed reactions added, still cannot get the required flux
through the objective).










	
update_costs()

	Update the coefficients for the indicator variables in the objective.

Done incrementally so that second time the function is called,
active indicators in the current solutions gets higher cost than the
unused indicators.






	
validate(reactions)

	








	
cobra.flux_analysis.gapfilling.gapfill(model, universal=None, lower_bound=0.05, penalties=None, demand_reactions=True, exchange_reactions=False, iterations=1)

	Perform gapfilling on a model.

See documentation for the class GapFiller.


	Parameters

	
	model (cobra.Model) – The model to perform gap filling on.


	universal (cobra.Model, None [https://docs.python.org/2/library/constants.html#None]) – A universal model with reactions that can be used to complete the
model. Only gapfill considering demand and exchange reactions if
left missing.


	lower_bound (float [https://docs.python.org/2/library/functions.html#float]) – The minimally accepted flux for the objective in the filled model.


	penalties (dict, None [https://docs.python.org/2/library/constants.html#None]) – A dictionary with keys being ‘universal’ (all reactions included in
the universal model), ‘exchange’ and ‘demand’ (all additionally
added exchange and demand reactions) for the three reaction types.
Can also have reaction identifiers for reaction specific costs.
Defaults are 1, 100 and 1 respectively.


	iterations (int [https://docs.python.org/2/library/functions.html#int]) – The number of rounds of gapfilling to perform. For every iteration,
the penalty for every used reaction increases linearly. This way,
the algorithm is encouraged to search for alternative solutions
which may include previously used reactions. I.e., with enough
iterations pathways including 10 steps will eventually be reported
even if the shortest pathway is a single reaction.


	exchange_reactions (bool [https://docs.python.org/2/library/functions.html#bool]) – Consider adding exchange (uptake) reactions for all metabolites
in the model.


	demand_reactions (bool [https://docs.python.org/2/library/functions.html#bool]) – Consider adding demand reactions for all metabolites.






	Returns

	list of lists with on set of reactions that completes the model per
requested iteration.



	Return type

	iterable





Examples

>>> import cobra.test as ct
>>> from cobra import Model
>>> from cobra.flux_analysis import gapfill
>>> model = ct.create_test_model("salmonella")
>>> universal = Model('universal')
>>> universal.add_reactions(model.reactions.GF6PTA.copy())
>>> model.remove_reactions([model.reactions.GF6PTA])
>>> gapfill(model, universal)













          

      

      

    

  

  
    
    14.1.1.2.1.3. cobra.flux_analysis.loopless module
    

    
 
  
  

    
      
          
            
  


14.1.1.2.1.3. cobra.flux_analysis.loopless module

Provides functions to remove thermodynamically infeasible loops.


	
cobra.flux_analysis.loopless.add_loopless(model, zero_cutoff=1e-12)

	Modify a model so all feasible flux distributions are loopless.

In most cases you probably want to use the much faster loopless_solution.
May be used in cases where you want to add complex constraints and
objecives (for instance quadratic objectives) to the model afterwards
or use an approximation of Gibbs free energy directions in you model.
Adds variables and constraints to a model which will disallow flux
distributions with loops. The used formulation is described in [1]_.
This function will modify your model.


	Parameters

	
	model (cobra.Model) – The model to which to add the constraints.


	zero_cutoff (positive float, optional) – Cutoff used for null space. Coefficients with an absolute value smaller
than zero_cutoff are considered to be zero.






	Returns

	



	Return type

	Nothing





References


	1

	Elimination of thermodynamically infeasible loops in steady-state
metabolic models. Schellenberger J, Lewis NE, Palsson BO. Biophys J.
2011 Feb 2;100(3):544-53. doi: 10.1016/j.bpj.2010.12.3707. Erratum
in: Biophys J. 2011 Mar 2;100(5):1381.










	
cobra.flux_analysis.loopless.construct_loopless_model(cobra_model)

	Construct a loopless model.

This adds MILP constraints to prevent flux from proceeding in a loop, as
done in http://dx.doi.org/10.1016/j.bpj.2010.12.3707
Please see the documentation for an explanation of the algorithm.

This must be solved with an MILP capable solver.






	
cobra.flux_analysis.loopless.loopless_fva_iter(model, reaction, solution=False, zero_cutoff=1e-06)

	Plugin to get a loopless FVA solution from single FVA iteration.

Assumes the following about model and reaction:
1. the model objective is set to be reaction
2. the model has been optimized and contains the minimum/maximum flux for


reaction





	the model contains an auxiliary variable called “fva_old_objective”
denoting the previous objective





	Parameters

	
	model (cobra.Model) – The model to be used.


	reaction (cobra.Reaction) – The reaction currently minimized/maximized.


	solution (boolean, optional) – Whether to return the entire solution or only the minimum/maximum for
reaction.


	zero_cutoff (positive float, optional) – Cutoff used for loop removal. Fluxes with an absolute value smaller
than zero_cutoff are considered to be zero.






	Returns

	Returns the minimized/maximized flux through reaction if
all_fluxes == False (default). Otherwise returns a loopless flux
solution containing the minimum/maximum flux for reaction.



	Return type

	single float or dict










	
cobra.flux_analysis.loopless.loopless_solution(model, fluxes=None)

	Convert an existing solution to a loopless one.

Removes as many loops as possible (see Notes).
Uses the method from CycleFreeFlux [1]_ and is much faster than
add_loopless and should therefore be the preferred option to get loopless
flux distributions.


	Parameters

	
	model (cobra.Model) – The model to which to add the constraints.


	fluxes (dict) – A dictionary {rxn_id: flux} that assigns a flux to each reaction. If
not None will use the provided flux values to obtain a close loopless
solution.






	Returns

	A solution object containing the fluxes with the least amount of
loops possible or None if the optimization failed (usually happening
if the flux distribution in fluxes is infeasible).



	Return type

	cobra.Solution





Notes

The returned flux solution has the following properties:


	it contains the minimal number of loops possible and no loops at all if
all flux bounds include zero


	it has an objective value close to the original one and the same
objective value id the objective expression can not form a cycle
(which is usually true since it consumes metabolites)


	it has the same exact exchange fluxes as the previous solution


	all fluxes have the same sign (flow in the same direction) as the
previous solution




References


	1

	CycleFreeFlux: efficient removal of thermodynamically infeasible
loops from flux distributions. Desouki AA, Jarre F, Gelius-Dietrich
G, Lercher MJ. Bioinformatics. 2015 Jul 1;31(13):2159-65. doi:
10.1093/bioinformatics/btv096.













          

      

      

    

  

  
    
    14.1.1.2.1.4. cobra.flux_analysis.moma module
    

    
 
  
  

    
      
          
            
  


14.1.1.2.1.4. cobra.flux_analysis.moma module

Contains functions to run minimization of metabolic adjustment (MOMA).


	
cobra.flux_analysis.moma.add_moma(model, solution=None, linear=False)

	Add constraints and objective representing for MOMA.

This adds variables and constraints for the minimization of metabolic
adjustment (MOMA) to the model.


	Parameters

	
	model (cobra.Model) – The model to add MOMA constraints and objective to.


	solution (cobra.Solution) – A previous solution to use as a reference.


	linear (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether to use the linear MOMA formulation or not.






	Returns

	



	Return type

	Nothing.





Notes

In the original MOMA specification one looks for the flux distribution
of the deletion (v^d) closest to the fluxes without the deletion (v).
In math this means:

minimize sum_i (v^d_i - v_i)^2
s.t. Sv^d = 0


lb_i <= v^d_i <= ub_i




Here, we use a variable transformation v^t := v^d_i - v_i. Substituting
and using the fact that Sv = 0 gives:

minimize sum_i (v^t_i)^2
s.t. Sv^d = 0


v^t = v^d_i - v_i
lb_i <= v^d_i <= ub_i




So basically we just re-center the flux space at the old solution and than
find the flux distribution closest to the new zero (center). This is the
same strategy as used in cameo.

In the case of linear MOMA, we instead minimize sum_i abs(v^t_i). The
linear MOMA is typically significantly faster. Also quadratic MOMA tends
to give flux distributions in which all fluxes deviate from the reference
fluxes a little bit whereas linear MOMA tends to give flux distributions
where the majority of fluxes are the same reference which few fluxes
deviating a lot (typical effect of L2 norm vs L1 norm).

The former objective function is saved in the optlang solver interface as
“moma_old_objective” and this can be used to immediately extract the value
of the former objective after MOMA optimization.









          

      

      

    

  

  
    
    14.1.1.2.1.5. cobra.flux_analysis.parsimonious module
    

    
 
  
  

    
      
          
            
  


14.1.1.2.1.5. cobra.flux_analysis.parsimonious module


	
cobra.flux_analysis.parsimonious.add_pfba(model, objective=None, fraction_of_optimum=1.0)

	Add pFBA objective

Add objective to minimize the summed flux of all reactions to the
current objective.


See also

pfba()




	Parameters

	
	model (cobra.Model) – The model to add the objective to


	objective – An objective to set in combination with the pFBA objective.


	fraction_of_optimum (float [https://docs.python.org/2/library/functions.html#float]) – Fraction of optimum which must be maintained. The original objective
reaction is constrained to be greater than maximal_value *
fraction_of_optimum.













	
cobra.flux_analysis.parsimonious.optimize_minimal_flux(*args, **kwargs)

	




	
cobra.flux_analysis.parsimonious.pfba(model, fraction_of_optimum=1.0, objective=None, reactions=None)

	Perform basic pFBA (parsimonious Enzyme Usage Flux Balance Analysis)
to minimize total flux.

pFBA [1] adds the minimization of all fluxes the the objective of the
model. This approach is motivated by the idea that high fluxes have a
higher enzyme turn-over and that since producing enzymes is costly,
the cell will try to minimize overall flux while still maximizing the
original objective function, e.g. the growth rate.


	Parameters

	
	model (cobra.Model) – The model


	fraction_of_optimum (float [https://docs.python.org/2/library/functions.html#float], optional) – Fraction of optimum which must be maintained. The original objective
reaction is constrained to be greater than maximal_value *
fraction_of_optimum.


	objective (dict or model.problem.Objective) – A desired objective to use during optimization in addition to the
pFBA objective. Dictionaries (reaction as key, coefficient as value)
can be used for linear objectives.


	reactions (iterable) – List of reactions or reaction identifiers. Implies return_frame to
be true. Only return fluxes for the given reactions. Faster than
fetching all fluxes if only a few are needed.






	Returns

	The solution object to the optimized model with pFBA constraints added.



	Return type

	cobra.Solution





References


	1

	Lewis, N. E., Hixson, K. K., Conrad, T. M., Lerman, J. A.,
Charusanti, P., Polpitiya, A. D., Palsson, B. O. (2010). Omic data
from evolved E. coli are consistent with computed optimal growth from
genome-scale models. Molecular Systems Biology, 6,
390. doi:10.1038/msb.2010.47













          

      

      

    

  

  
    
    14.1.1.2.1.6. cobra.flux_analysis.phenotype_phase_plane module
    

    
 
  
  

    
      
          
            
  


14.1.1.2.1.6. cobra.flux_analysis.phenotype_phase_plane module


	
cobra.flux_analysis.phenotype_phase_plane.add_envelope(model, reactions, grid, c_input, c_output, threshold)

	




	
cobra.flux_analysis.phenotype_phase_plane.find_carbon_sources(model)

	Find all active carbon source reactions.


	Parameters

	model (Model) – A genome-scale metabolic model.



	Returns

	The medium reactions with carbon input flux.



	Return type

	list










	
cobra.flux_analysis.phenotype_phase_plane.production_envelope(model, reactions, objective=None, carbon_sources=None, points=20, threshold=1e-07)

	Calculate the objective value conditioned on all combinations of
fluxes for a set of chosen reactions

The production envelope can be used to analyze a model’s ability to
produce a given compound conditional on the fluxes for another set of
reactions, such as the uptake rates. The model is alternately optimized
with respect to minimizing and maximizing the objective and the
obtained fluxes are recorded. Ranges to compute production is set to the
effective
bounds, i.e., the minimum / maximum fluxes that can be obtained given
current reaction bounds.


	Parameters

	
	model (cobra.Model) – The model to compute the production envelope for.


	reactions (list or string [https://docs.python.org/2/library/string.html#module-string]) – A list of reactions, reaction identifiers or a single reaction.


	objective (string [https://docs.python.org/2/library/string.html#module-string], dict, model.solver.interface.Objective, optional) – The objective (reaction) to use for the production envelope. Use the
model’s current objective if left missing.


	carbon_sources (list or string [https://docs.python.org/2/library/string.html#module-string], optional) – One or more reactions or reaction identifiers that are the source of
carbon for computing carbon (mol carbon in output over mol carbon in
input) and mass yield (gram product over gram output). Only objectives
with a carbon containing input and output metabolite is supported.
Will identify active carbon sources in the medium if none are specified.


	points (int [https://docs.python.org/2/library/functions.html#int], optional) – The number of points to calculate production for.


	threshold (float [https://docs.python.org/2/library/functions.html#float], optional) – A cut-off under which flux values will be considered to be zero.






	Returns

	A data frame with one row per evaluated point and


	reaction id : one column per input reaction indicating the flux at
each given point,


	carbon_source: identifiers of carbon exchange reactions




A column for the maximum and minimum each for the following types:


	flux: the objective flux


	carbon_yield: if carbon source is defined and the product is a
single metabolite (mol carbon product per mol carbon feeding source)


	mass_yield: if carbon source is defined and the product is a
single metabolite (gram product per 1 g of feeding source)








	Return type

	pandas.DataFrame





Examples

>>> import cobra.test
>>> from cobra.flux_analysis import production_envelope
>>> model = cobra.test.create_test_model("textbook")
>>> production_envelope(model, ["EX_glc__D_e", "EX_o2_e"])










	
cobra.flux_analysis.phenotype_phase_plane.reaction_elements(reaction)

	Split metabolites into the atoms times their stoichiometric coefficients.


	Parameters

	reaction (Reaction) – The metabolic reaction whose components are desired.



	Returns

	Each of the reaction’s metabolites’ desired carbon elements (if any)
times that metabolite’s stoichiometric coefficient.



	Return type

	list










	
cobra.flux_analysis.phenotype_phase_plane.reaction_weight(reaction)

	Return the metabolite weight times its stoichiometric coefficient.






	
cobra.flux_analysis.phenotype_phase_plane.total_components_flux(flux, components, consumption=True)

	Compute the total components consumption or production flux.


	Parameters

	
	flux (float [https://docs.python.org/2/library/functions.html#float]) – The reaction flux for the components.


	components (list) – List of stoichiometrically weighted components.


	consumption (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Whether to sum up consumption or production fluxes.













	
cobra.flux_analysis.phenotype_phase_plane.total_yield(input_fluxes, input_elements, output_flux, output_elements)

	Compute total output per input unit.

Units are typically mol carbon atoms or gram of source and product.


	Parameters

	
	input_fluxes (list) – A list of input reaction fluxes in the same order as the
input_components.


	input_elements (list) – A list of reaction components which are in turn list of numbers.


	output_flux (float [https://docs.python.org/2/library/functions.html#float]) – The output flux value.


	output_elements (list) – A list of stoichiometrically weighted output reaction components.






	Returns

	The ratio between output (mol carbon atoms or grams of product) and
input (mol carbon atoms or grams of source compounds).



	Return type

	float [https://docs.python.org/2/library/functions.html#float]













          

      

      

    

  

  
    
    14.1.1.2.1.7. cobra.flux_analysis.reaction module
    

    
 
  
  

    
      
          
            
  


14.1.1.2.1.7. cobra.flux_analysis.reaction module

functions for analyzing / creating objective functions


	
cobra.flux_analysis.reaction.assess(model, reaction, flux_coefficient_cutoff=0.001, solver=None)

	Assesses production capacity.

Assesses the capacity of the model to produce the precursors for the
reaction and absorb the production of the reaction while the reaction is
operating at, or above, the specified cutoff.


	Parameters

	
	model (cobra.Model) – The cobra model to assess production capacity for


	reaction (reaction identifier or cobra.Reaction) – The reaction to assess


	flux_coefficient_cutoff (float [https://docs.python.org/2/library/functions.html#float]) – The minimum flux that reaction must carry to be considered active.


	solver (basestring [https://docs.python.org/2/library/functions.html#basestring]) – Solver name. If None, the default solver will be used.






	Returns

	True if the model can produce the precursors and absorb the products
for the reaction operating at, or above, flux_coefficient_cutoff.
Otherwise, a dictionary of {‘precursor’: Status, ‘product’: Status}.
Where Status is the results from assess_precursors and
assess_products, respectively.



	Return type

	bool [https://docs.python.org/2/library/functions.html#bool] or dict










	
cobra.flux_analysis.reaction.assess_component(model, reaction, side, flux_coefficient_cutoff=0.001, solver=None)

	Assesses the ability of the model to provide sufficient precursors,
or absorb products, for a reaction operating at, or beyond,
the specified cutoff.


	Parameters

	
	model (cobra.Model) – The cobra model to assess production capacity for


	reaction (reaction identifier or cobra.Reaction) – The reaction to assess


	side (basestring [https://docs.python.org/2/library/functions.html#basestring]) – Side of the reaction, ‘products’ or ‘reactants’


	flux_coefficient_cutoff (float [https://docs.python.org/2/library/functions.html#float]) – The minimum flux that reaction must carry to be considered active.


	solver (basestring [https://docs.python.org/2/library/functions.html#basestring]) – Solver name. If None, the default solver will be used.






	Returns

	True if the precursors can be simultaneously produced at the
specified cutoff. False, if the model has the capacity to produce
each individual precursor at the specified threshold  but not all
precursors at the required level simultaneously. Otherwise a
dictionary of the required and the produced fluxes for each reactant
that is not produced in sufficient quantities.



	Return type

	bool [https://docs.python.org/2/library/functions.html#bool] or dict










	
cobra.flux_analysis.reaction.assess_precursors(model, reaction, flux_coefficient_cutoff=0.001, solver=None)

	Assesses the ability of the model to provide sufficient precursors for
a reaction operating at, or beyond, the specified cutoff.

Deprecated: use assess_component instead


	Parameters

	
	model (cobra.Model) – The cobra model to assess production capacity for


	reaction (reaction identifier or cobra.Reaction) – The reaction to assess


	flux_coefficient_cutoff (float [https://docs.python.org/2/library/functions.html#float]) – The minimum flux that reaction must carry to be considered active.


	solver (basestring [https://docs.python.org/2/library/functions.html#basestring]) – Solver name. If None, the default solver will be used.






	Returns

	True if the precursors can be simultaneously produced at the
specified cutoff. False, if the model has the capacity to produce
each individual precursor at the specified threshold  but not all
precursors at the required level simultaneously. Otherwise a
dictionary of the required and the produced fluxes for each reactant
that is not produced in sufficient quantities.



	Return type

	bool [https://docs.python.org/2/library/functions.html#bool] or dict










	
cobra.flux_analysis.reaction.assess_products(model, reaction, flux_coefficient_cutoff=0.001, solver=None)

	Assesses whether the model has the capacity to absorb the products of
a reaction at a given flux rate.

Useful for identifying which components might be blocking a reaction
from achieving a specific flux rate.

Deprecated: use assess_component instead


	Parameters

	
	model (cobra.Model) – The cobra model to assess production capacity for


	reaction (reaction identifier or cobra.Reaction) – The reaction to assess


	flux_coefficient_cutoff (float [https://docs.python.org/2/library/functions.html#float]) – The minimum flux that reaction must carry to be considered active.


	solver (basestring [https://docs.python.org/2/library/functions.html#basestring]) – Solver name. If None, the default solver will be used.






	Returns

	True if the model has the capacity to absorb all the reaction
products being simultaneously given the specified cutoff.   False,
if the model has the capacity to absorb each individual product but
not all products at the required level simultaneously.   Otherwise a
dictionary of the required and the capacity fluxes for each product
that is not absorbed in sufficient quantities.



	Return type

	bool [https://docs.python.org/2/library/functions.html#bool] or dict













          

      

      

    

  

  
    
    14.1.1.2.1.8. cobra.flux_analysis.sampling module
    

    
 
  
  

    
      
          
            
  


14.1.1.2.1.8. cobra.flux_analysis.sampling module

Module implementing flux sampling for cobra models.

New samplers should derive from the abstract HRSampler class
where possible to provide a uniform interface.


	
class cobra.flux_analysis.sampling.ACHRSampler(model, thinning=100, seed=None)

	Bases: cobra.flux_analysis.sampling.HRSampler

Artificial Centering Hit-and-Run sampler.

A sampler with low memory footprint and good convergence.


	Parameters

	
	model (a cobra model) – The cobra model from which to generate samples.


	thinning (int [https://docs.python.org/2/library/functions.html#int], optional) – The thinning factor of the generated sampling chain. A thinning of 10
means samples are returned every 10 steps.


	seed (positive integer, optional) – Sets the random number seed. Initialized to the current time stamp if
None.









	
model

	cobra.Model – The cobra model from which the samples get generated.






	
thinning

	int – The currently used thinning factor.






	
n_samples

	int – The total number of samples that have been generated by this
sampler instance.






	
problem

	collections.namedtuple – A python object whose attributes define the entire sampling problem in
matrix form. See docstring of Problem.






	
warmup

	a numpy matrix – A matrix of with as many columns as reactions in the model and more
than 3 rows containing a warmup sample in each row. None if no warmup
points have been generated yet.






	
seed

	positive integer, optional – Sets the random number seed. Initialized to the current time stamp if
None.






	
fwd_idx

	np.array – Has one entry for each reaction in the model containing the index of
the respective forward variable.






	
rev_idx

	np.array – Has one entry for each reaction in the model containing the index of
the respective reverse variable.






	
prev

	numpy array – The current/last flux sample generated.






	
center

	numpy array – The center of the sampling space as estimated by the mean of all
previously generated samples.





Notes

ACHR generates samples by choosing new directions from the sampling space’s
center and the warmup points. The implementation used here is the same
as in the Matlab Cobra Toolbox [2]_ and uses only the initial warmup points
to generate new directions and not any other previous iterates. This
usually gives better mixing since the startup points are chosen to span
the space in a wide manner. This also makes the generated sampling chain
quasi-markovian since the center converges rapidly.

Memory usage is roughly in the order of (2 * number reactions)^2
due to the required nullspace matrices and warmup points. So large
models easily take up a few GB of RAM.

References


	1

	Direction Choice for Accelerated Convergence in Hit-and-Run Sampling
David E. Kaufman Robert L. Smith
Operations Research 199846:1 , 84-95
https://doi.org/10.1287/opre.46.1.84



	2

	https://github.com/opencobra/cobratoolbox






	
sample(n, fluxes=True)

	Generate a set of samples.

This is the basic sampling function for all hit-and-run samplers.


	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of samples that are generated at once.


	fluxes (boolean) – Whether to return fluxes or the internal solver variables. If set
to False will return a variable for each forward and backward flux
as well as all additional variables you might have defined in the
model.






	Returns

	Returns a matrix with n rows, each containing a flux sample.



	Return type

	numpy.matrix [https://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix]





Notes

Performance of this function linearly depends on the number
of reactions in your model and the thinning factor.










	
class cobra.flux_analysis.sampling.HRSampler(model, thinning, seed=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

The abstract base class for hit-and-run samplers.


	Parameters

	
	model (cobra.Model) – The cobra model from which to generate samples.


	thinning (int [https://docs.python.org/2/library/functions.html#int]) – The thinning factor of the generated sampling chain. A thinning of 10
means samples are returned every 10 steps.









	
model

	cobra.Model – The cobra model from which the samples get generated.






	
thinning

	int – The currently used thinning factor.






	
n_samples

	int – The total number of samples that have been generated by this
sampler instance.






	
problem

	collections.namedtuple – A python object whose attributes define the entire sampling problem in
matrix form. See docstring of Problem.






	
warmup

	a numpy matrix – A matrix of with as many columns as reactions in the model and more
than 3 rows containing a warmup sample in each row. None if no warmup
points have been generated yet.






	
seed

	positive integer, optional – Sets the random number seed. Initialized to the current time stamp if
None.






	
fwd_idx

	np.array – Has one entry for each reaction in the model containing the index of
the respective forward variable.






	
rev_idx

	np.array – Has one entry for each reaction in the model containing the index of
the respective reverse variable.






	
batch(batch_size, batch_num, fluxes=True)

	Create a batch generator.

This is useful to generate n batches of m samples each.


	Parameters

	
	batch_size (int [https://docs.python.org/2/library/functions.html#int]) – The number of samples contained in each batch (m).


	batch_num (int [https://docs.python.org/2/library/functions.html#int]) – The number of batches in the generator (n).


	fluxes (boolean) – Whether to return fluxes or the internal solver variables. If set
to False will return a variable for each forward and backward flux
as well as all additional variables you might have defined in the
model.






	Yields

	pandas.DataFrame – A DataFrame with dimensions (batch_size x n_r) containing
a valid flux sample for a total of n_r reactions (or variables if
fluxes=False) in each row.










	
generate_fva_warmup()

	Generate the warmup points for the sampler.

Generates warmup points by setting each flux as the sole objective
and minimizing/maximizing it. Also caches the projection of the
warmup points into the nullspace for non-homogeneous problems (only
if necessary).






	
sample(n, fluxes=True)

	Abstract sampling function.

Should be overwritten by child classes.






	
validate(samples)

	Validate a set of samples for equality and inequality feasibility.

Can be used to check whether the generated samples and warmup points
are feasible.


	Parameters

	samples (numpy.matrix [https://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix]) – Must be of dimension (n_samples x n_reactions). Contains the
samples to be validated. Samples must be from fluxes.



	Returns

	A one-dimensional numpy array of length containing
a code of 1 to 3 letters denoting the validation result:


	’v’ means feasible in bounds and equality constraints


	’l’ means a lower bound violation


	’u’ means a lower bound validation


	’e’ means and equality constraint violation








	Return type

	numpy.array [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array]














	
cobra.flux_analysis.sampling.LOGGER = <logging.Logger object>

	The logger for the package.






	
class cobra.flux_analysis.sampling.OptGPSampler(model, processes, thinning=100, seed=None)

	Bases: cobra.flux_analysis.sampling.HRSampler

A parallel optimized sampler.

A parallel sampler with fast convergence and parallel execution. See [1]_
for details.


	Parameters

	
	model (cobra.Model) – The cobra model from which to generate samples.


	processes (int [https://docs.python.org/2/library/functions.html#int]) – The number of processes used during sampling.


	thinning (int [https://docs.python.org/2/library/functions.html#int], optional) – The thinning factor of the generated sampling chain. A thinning of 10
means samples are returned every 10 steps.


	seed (positive integer, optional) – Sets the random number seed. Initialized to the current time stamp if
None.









	
model

	cobra.Model – The cobra model from which the samples get generated.






	
thinning

	int – The currently used thinning factor.






	
n_samples

	int – The total number of samples that have been generated by this
sampler instance.






	
problem

	collections.namedtuple – A python object whose attributes define the entire sampling problem in
matrix form. See docstring of Problem.






	
warmup

	a numpy matrix – A matrix of with as many columns as reactions in the model and more
than 3 rows containing a warmup sample in each row. None if no warmup
points have been generated yet.






	
seed

	positive integer, optional – Sets the random number seed. Initialized to the current time stamp if
None.






	
fwd_idx

	np.array – Has one entry for each reaction in the model containing the index of
the respective forward variable.






	
rev_idx

	np.array – Has one entry for each reaction in the model containing the index of
the respective reverse variable.






	
prev

	numpy.array – The current/last flux sample generated.






	
center

	numpy.array – The center of the sampling space as estimated by the mean of all
previously generated samples.





Notes

The sampler is very similar to artificial centering where each process
samples its own chain. Initial points are chosen randomly from the warmup
points followed by a linear transformation that pulls the points towards
the a little bit towards the center of the sampling space.

If the number of processes used is larger than one the requested
number of samples is adjusted to the smallest multiple of the number of
processes larger than the requested sample number. For instance, if you
have 3 processes and request 8 samples you will receive 9.

Memory usage is roughly in the order of (2 * number reactions)^2
due to the required nullspace matrices and warmup points. So large
models easily take up a few GB of RAM. However, most of the large matrices
are kept in shared memory. So the RAM usage is independent of the number
of processes.

References


	1

	Megchelenbrink W, Huynen M, Marchiori E (2014)
optGpSampler: An Improved Tool for Uniformly Sampling the Solution-Space
of Genome-Scale Metabolic Networks.
PLoS ONE 9(2): e86587.
https://doi.org/10.1371/journal.pone.0086587






	
sample(n, fluxes=True)

	Generate a set of samples.

This is the basic sampling function for all hit-and-run samplers.


	nint

	The minimum number of samples that are generated at once
(see Notes).



	fluxesboolean

	Whether to return fluxes or the internal solver variables. If set
to False will return a variable for each forward and backward flux
as well as all additional variables you might have defined in the
model.






	Returns

	Returns a matrix with n rows, each containing a flux sample.



	Return type

	numpy.matrix [https://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix]





Notes

Performance of this function linearly depends on the number
of reactions in your model and the thinning factor.

If the number of processes is larger than one, computation is split
across as the CPUs of your machine. This may shorten computation time.
However, there is also overhead in setting up parallel computation so
we recommend to calculate large numbers of samples at once
(n > 1000).










	
class cobra.flux_analysis.sampling.Problem(equalities, b, inequalities, bounds, variable_fixed, variable_bounds, nullspace, homogeneous)

	Bases: tuple

Defines the matrix representation of a sampling problem.


	
equalities

	numpy.array – All equality constraints in the model.






	
b

	numpy.array – The right side of the equality constraints.






	
inequalities

	numpy.array – All inequality constraints in the model.






	
bounds

	numpy.array – The lower and upper bounds for the inequality constraints.






	
variable_bounds

	numpy.array – The lower and upper bounds for the variables.






	
homogeneous

	boolean – Indicates whether the sampling problem is homogenous, e.g. whether there
exist no non-zero fixed variables or constraints.






	
nullspace

	numpy.matrix – A matrix containing the nullspace of the equality constraints. Each column
is one basis vector.






	
b

	Alias for field number 1






	
bounds

	Alias for field number 3






	
equalities

	Alias for field number 0






	
homogeneous

	Alias for field number 7






	
inequalities

	Alias for field number 2






	
nullspace

	Alias for field number 6






	
variable_bounds

	Alias for field number 5






	
variable_fixed

	Alias for field number 4










	
cobra.flux_analysis.sampling.bounds_tol

	The tolerance used for checking bounds feasibility.






	
cobra.flux_analysis.sampling.feasibility_tol

	The tolerance used for checking equalities feasibility.






	
cobra.flux_analysis.sampling.mp_init(obj)

	Initialize the multiprocessing pool.






	
cobra.flux_analysis.sampling.nproj = 1000000

	Reproject the solution into the feasibility space every nproj iterations.






	
cobra.flux_analysis.sampling.nproj_center = 10000

	Reproject the center into the nullspace every nproj_center iterations.
Only used for inhomogeneous problems.






	
cobra.flux_analysis.sampling.sample(model, n, method='optgp', thinning=100, processes=1, seed=None)

	Sample valid flux distributions from a cobra model.

The function samples valid flux distributions from a cobra model.
Currently we support two methods:


	
	‘optgp’ (default) which uses the OptGPSampler that supports parallel

	sampling [1]_. Requires large numbers of samples to be performant
(n < 1000). For smaller samples ‘achr’ might be better suited.









or


	‘achr’ which uses artificial centering hit-and-run. This is a single
process method with good convergence [2]_.





	Parameters

	
	model (cobra.Model) – The model from which to sample flux distributions.


	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of samples to obtain. When using ‘optgp’ this must be a
multiple of processes, otherwise a larger number of samples will be
returned.


	method (str [https://docs.python.org/2/library/functions.html#str], optional) – The sampling algorithm to use.


	thinning (int [https://docs.python.org/2/library/functions.html#int], optional) – The thinning factor of the generated sampling chain. A thinning of 10
means samples are returned every 10 steps. Defaults to 100 which in
benchmarks gives approximately uncorrelated samples. If set to one
will return all iterates.


	processes (int [https://docs.python.org/2/library/functions.html#int], optional) – Only used for ‘optgp’. The number of processes used to generate
samples.


	seed (positive integer, optional) – The random number seed to be used. Initialized to current time stamp
if None.






	Returns

	The generated flux samples. Each row corresponds to a sample of the
fluxes and the columns are the reactions.



	Return type

	pandas.DataFrame





Notes

The samplers have a correction method to ensure equality feasibility for
long-running chains, however this will only work for homogeneous models,
meaning models with no non-zero fixed variables or constraints (
right-hand side of the equalities are zero).

References


	1

	Megchelenbrink W, Huynen M, Marchiori E (2014)
optGpSampler: An Improved Tool for Uniformly Sampling the Solution-Space
of Genome-Scale Metabolic Networks.
PLoS ONE 9(2): e86587.



	2

	Direction Choice for Accelerated Convergence in Hit-and-Run Sampling
David E. Kaufman Robert L. Smith
Operations Research 199846:1 , 84-95










	
cobra.flux_analysis.sampling.shared_np_array(shape, data=None, integer=False)

	Create a new numpy array that resides in shared memory.


	Parameters

	
	shape (tuple of ints) – The shape of the new array.


	data (numpy.array [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array]) – Data to copy to the new array. Has to have the same shape.


	integer (boolean) – Whether to use an integer array. Defaults to False which means
float array.
















          

      

      

    

  

  
    
    14.1.1.2.1.9. cobra.flux_analysis.summary module
    

    
 
  
  

    
      
          
            
  


14.1.1.2.1.9. cobra.flux_analysis.summary module


	
cobra.flux_analysis.summary.metabolite_summary(met, solution=None, threshold=0.01, fva=False, floatfmt='.3g')

	Print a summary of the reactions which produce and consume this
metabolite


	solutioncobra.core.Solution

	A previously solved model solution to use for generating the
summary. If none provided (default), the summary method will resolve
the model. Note that the solution object must match the model, i.e.,
changes to the model such as changed bounds, added or removed
reactions are not taken into account by this method.



	thresholdfloat

	a value below which to ignore reaction fluxes



	fvafloat (0->1), or None

	Whether or not to include flux variability analysis in the output.
If given, fva should be a float between 0 and 1, representing the
fraction of the optimum objective to be searched.



	floatfmtstring

	format method for floats, passed to tabulate. Default is ‘.3g’.










	
cobra.flux_analysis.summary.model_summary(model, solution=None, threshold=1e-08, fva=None, floatfmt='.3g')

	Print a summary of the input and output fluxes of the model.


	solutioncobra.core.Solution

	A previously solved model solution to use for generating the
summary. If none provided (default), the summary method will resolve
the model. Note that the solution object must match the model, i.e.,
changes to the model such as changed bounds, added or removed
reactions are not taken into account by this method.



	thresholdfloat

	tolerance for determining if a flux is zero (not printed)



	fvaint or None

	Whether or not to calculate and report flux variability in the
output summary



	floatfmtstring

	format method for floats, passed to tabulate. Default is ‘.3g’.













          

      

      

    

  

  
    
    14.1.1.2.1.10. cobra.flux_analysis.variability module
    

    
 
  
  

    
      
          
            
  


14.1.1.2.1.10. cobra.flux_analysis.variability module


	
cobra.flux_analysis.variability.find_blocked_reactions(model, reaction_list=None, zero_cutoff=1e-09, open_exchanges=False)

	Finds reactions that cannot carry a flux with the current
exchange reaction settings for a cobra model, using flux variability
analysis.


	Parameters

	
	model (cobra.Model) – The model to analyze


	reaction_list (list) – List of reactions to consider, use all if left missing


	zero_cutoff (float [https://docs.python.org/2/library/functions.html#float]) – Flux value which is considered to effectively be zero.


	open_exchanges (bool [https://docs.python.org/2/library/functions.html#bool]) – If true, set bounds on exchange reactions to very high values to
avoid that being the bottle-neck.






	Returns

	List with the blocked reactions



	Return type

	list










	
cobra.flux_analysis.variability.find_essential_genes(model, threshold=None, processes=None)

	Return a set of essential genes.

A gene is considered essential if restricting the flux of all reactions
that depends on it to zero causes the objective (e.g. the growth rate)
to also be zero.


	Parameters

	
	model (cobra.Model) – The model to find the essential genes for.


	threshold (float [https://docs.python.org/2/library/functions.html#float], optional) – Minimal objective flux to be considered viable. By default this is
0.01 times the growth rate.


	processes (int [https://docs.python.org/2/library/functions.html#int], optional) – The number of parallel processes to run. Can speed up the computations
if the number of knockouts to perform is large. If not passed,
will be set to the number of CPUs found.






	Returns

	Set of essential genes



	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]










	
cobra.flux_analysis.variability.find_essential_reactions(model, threshold=None, processes=None)

	Return a set of essential reactions.

A reaction is considered essential if restricting its flux to zero
causes the objective (e.g. the growth rate) to also be zero.


	Parameters

	
	model (cobra.Model) – The model to find the essential reactions for.


	threshold (float [https://docs.python.org/2/library/functions.html#float], optional) – Minimal objective flux to be considered viable. By default this is
0.01 times the growth rate.


	processes (int [https://docs.python.org/2/library/functions.html#int], optional) – The number of parallel processes to run. Can speed up the computations
if the number of knockouts to perform is large. If not passed,
will be set to the number of CPUs found.






	Returns

	Set of essential reactions



	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]










	
cobra.flux_analysis.variability.flux_variability_analysis(model, reaction_list=None, loopless=False, fraction_of_optimum=1.0, pfba_factor=None)

	Runs flux variability analysis to find the min/max flux values for each
each reaction in reaction_list.


	Parameters

	
	model (a cobra model) – The model for which to run the analysis. It will not be modified.


	reaction_list (list of cobra.Reaction or str [https://docs.python.org/2/library/functions.html#str], optional) – The reactions for which to obtain min/max fluxes. If None will use
all reactions in the model.


	loopless (boolean, optional) – Whether to return only loopless solutions. Ignored for legacy solvers,
also see Notes.


	fraction_of_optimum (float [https://docs.python.org/2/library/functions.html#float], optional) – Must be <= 1.0. Requires that the objective value is at least
fraction * max_objective_value. A value of 0.85 for instance means that
the objective has to be at least at 85% percent of its maximum.


	pfba_factor (float [https://docs.python.org/2/library/functions.html#float], optional) – Add additional constraint to the model that the total sum of
absolute fluxes must not be larger than this value times the
smallest possible sum of absolute fluxes, i.e., by setting the value
to 1.1 then the total sum of absolute fluxes must not be more than
10% larger than the pfba solution. Since the pfba solution is the
one that optimally minimizes the total flux sum, the pfba_factor
should, if set, be larger than one. Setting this value may lead to
more realistic predictions of the effective flux bounds.






	Returns

	DataFrame with reaction identifier as the index columns


	maximum: indicating the highest possible flux


	minimum: indicating the lowest possible flux








	Return type

	pandas.DataFrame





Notes

This implements the fast version as described in 1. Please note that
the flux distribution containing all minimal/maximal fluxes does not have
to be a feasible solution for the model. Fluxes are minimized/maximized
individually and a single minimal flux might require all others to be
suboptimal.

Using the loopless option will lead to a significant increase in
computation time (about a factor of 100 for large models). However, the
algorithm used here (see 2) is still more than 1000x faster than the
“naive” version using add_loopless(model). Also note that if you have
included constraints that force a loop (for instance by setting all fluxes
in a loop to be non-zero) this loop will be included in the solution.

References


	1

	Computationally efficient flux variability analysis.
Gudmundsson S, Thiele I.
BMC Bioinformatics. 2010 Sep 29;11:489.
doi: 10.1186/1471-2105-11-489, PMID: 20920235



	2

	CycleFreeFlux: efficient removal of thermodynamically infeasible
loops from flux distributions.
Desouki AA, Jarre F, Gelius-Dietrich G, Lercher MJ.
Bioinformatics. 2015 Jul 1;31(13):2159-65.
doi: 10.1093/bioinformatics/btv096.













          

      

      

    

  

  
    
    14.1.1.3. cobra.io package
    

    
 
  
  

    
      
          
            
  


14.1.1.3. cobra.io package


14.1.1.3.1. Submodules



	14.1.1.3.1.1. cobra.io.dict module

	14.1.1.3.1.2. cobra.io.json module

	14.1.1.3.1.3. cobra.io.mat module

	14.1.1.3.1.4. cobra.io.sbml module

	14.1.1.3.1.5. cobra.io.sbml3 module

	14.1.1.3.1.6. cobra.io.yaml module








14.1.1.3.2. Module contents







          

      

      

    

  

  
    
    14.1.1.3.1.1. cobra.io.dict module
    

    
 
  
  

    
      
          
            
  


14.1.1.3.1.1. cobra.io.dict module


	
cobra.io.dict.gene_from_dict(gene)

	




	
cobra.io.dict.gene_to_dict(gene)

	




	
cobra.io.dict.metabolite_from_dict(metabolite)

	




	
cobra.io.dict.metabolite_to_dict(metabolite)

	




	
cobra.io.dict.model_from_dict(obj)

	Build a model from a dict.

Models stored in json are first formulated as a dict that can be read to
cobra model using this function.


	Parameters

	obj (dict) – A dictionary with elements, ‘genes’, ‘compartments’, ‘id’,
‘metabolites’, ‘notes’ and ‘reactions’; where ‘metabolites’, ‘genes’
and ‘metabolites’ are in turn lists with dictionaries holding all
attributes to form the corresponding object.



	Returns

	The generated model.



	Return type

	cora.core.Model






See also

cobra.io.model_to_dict()








	
cobra.io.dict.model_to_dict(model, sort=False)

	Convert model to a dict.


	Parameters

	
	model (cobra.Model) – The model to reformulate as a dict.


	sort (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Whether to sort the metabolites, reactions, and genes or maintain the
order defined in the model.






	Returns

	A dictionary with elements, ‘genes’, ‘compartments’, ‘id’,
‘metabolites’, ‘notes’ and ‘reactions’; where ‘metabolites’, ‘genes’
and ‘metabolites’ are in turn lists with dictionaries holding all
attributes to form the corresponding object.



	Return type

	OrderedDict






See also

cobra.io.model_from_dict()








	
cobra.io.dict.reaction_from_dict(reaction, model)

	




	
cobra.io.dict.reaction_to_dict(reaction)

	







          

      

      

    

  

  
    
    14.1.1.3.1.2. cobra.io.json module
    

    
 
  
  

    
      
          
            
  


14.1.1.3.1.2. cobra.io.json module


	
cobra.io.json.from_json(document)

	Load a cobra model from a JSON document.


	Parameters

	document (str [https://docs.python.org/2/library/functions.html#str]) – The JSON document representation of a cobra model.



	Returns

	The cobra model as represented in the JSON document.



	Return type

	cobra.Model






See also


	load_json_model()

	Load directly from a file.












	
cobra.io.json.load_json_model(filename)

	Load a cobra model from a file in JSON format.


	Parameters

	filename (str [https://docs.python.org/2/library/functions.html#str] or file-like) – File path or descriptor that contains the JSON document describing the
cobra model.



	Returns

	The cobra model as represented in the JSON document.



	Return type

	cobra.Model






See also


	from_json()

	Load from a string.












	
cobra.io.json.save_json_model(model, filename, sort=False, pretty=False, **kwargs)

	Write the cobra model to a file in JSON format.

kwargs are passed on to json.dump.


	Parameters

	
	model (cobra.Model) – The cobra model to represent.


	filename (str [https://docs.python.org/2/library/functions.html#str] or file-like) – File path or descriptor that the JSON representation should be
written to.


	sort (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Whether to sort the metabolites, reactions, and genes or maintain the
order defined in the model.


	pretty (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Whether to format the JSON more compactly (default) or in a more
verbose but easier to read fashion. Can be partially overwritten by the
kwargs.









See also


	to_json()

	Return a string representation.



	json.dump() [https://docs.python.org/2/library/json.html#json.dump]

	Base function.












	
cobra.io.json.to_json(model, sort=False, **kwargs)

	Return the model as a JSON document.

kwargs are passed on to json.dumps.


	Parameters

	
	model (cobra.Model) – The cobra model to represent.


	sort (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Whether to sort the metabolites, reactions, and genes or maintain the
order defined in the model.






	Returns

	String representation of the cobra model as a JSON document.



	Return type

	str [https://docs.python.org/2/library/functions.html#str]






See also


	save_json_model()

	Write directly to a file.



	json.dumps() [https://docs.python.org/2/library/json.html#json.dumps]

	Base function.















          

      

      

    

  

  
    
    14.1.1.3.1.3. cobra.io.mat module
    

    
 
  
  

    
      
          
            
  


14.1.1.3.1.3. cobra.io.mat module


	
cobra.io.mat.create_mat_dict(model)

	create a dict mapping model attributes to arrays






	
cobra.io.mat.create_mat_metabolite_id(model)

	




	
cobra.io.mat.from_mat_struct(mat_struct, model_id=None, inf=<Mock object>)

	create a model from the COBRA toolbox struct

The struct will be a dict read in by scipy.io.loadmat






	
cobra.io.mat.load_matlab_model(infile_path, variable_name=None, inf=<Mock object>)

	Load a cobra model stored as a .mat file


	Parameters

	
	infile_path (str [https://docs.python.org/2/library/functions.html#str]) – path to the file to to read


	variable_name (str [https://docs.python.org/2/library/functions.html#str], optional) – The variable name of the model in the .mat file. If this is not
specified, then the first MATLAB variable which looks like a COBRA
model will be used


	inf (value) – The value to use for infinite bounds. Some solvers do not handle
infinite values so for using those, set this to a high numeric value.






	Returns

	The resulting cobra model



	Return type

	cobra.core.Model.Model










	
cobra.io.mat.model_to_pymatbridge(model, variable_name='model', matlab=None)

	send the model to a MATLAB workspace through pymatbridge

This model can then be manipulated through the COBRA toolbox


	Parameters

	
	variable_name (str [https://docs.python.org/2/library/functions.html#str]) – The variable name to which the model will be assigned in the
MATLAB workspace


	matlab (None [https://docs.python.org/2/library/constants.html#None] or pymatbridge.Matlab instance) – The MATLAB workspace to which the variable will be sent. If
this is None, then this will be sent to the same environment
used in IPython magics.













	
cobra.io.mat.save_matlab_model(model, file_name, varname=None)

	Save the cobra model as a .mat file.

This .mat file can be used directly in the MATLAB version of COBRA.


	Parameters

	
	model (cobra.core.Model.Model object) – The model to save


	file_name (str [https://docs.python.org/2/library/functions.html#str] or file-like object) – The file to save to


	varname (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the variable within the workspace
















          

      

      

    

  

  
    
    14.1.1.3.1.4. cobra.io.sbml module
    

    
 
  
  

    
      
          
            
  


14.1.1.3.1.4. cobra.io.sbml module


	
cobra.io.sbml.add_sbml_species(sbml_model, cobra_metabolite, note_start_tag, note_end_tag, boundary_metabolite=False)

	A helper function for adding cobra metabolites to an sbml model.


	Parameters

	
	sbml_model (sbml_model object) – 


	cobra_metabolite (a cobra.Metabolite object) – 


	note_start_tag (string [https://docs.python.org/2/library/string.html#module-string]) – the start tag for parsing cobra notes. this will eventually
be supplanted when COBRA is worked into sbml.


	note_end_tag (string [https://docs.python.org/2/library/string.html#module-string]) – the end tag for parsing cobra notes. this will eventually
be supplanted when COBRA is worked into sbml.


	boundary_metabolite (bool [https://docs.python.org/2/library/functions.html#bool]) – if metabolite boundary condition should be set or not






	Returns

	string



	Return type

	the created metabolite identifier










	
cobra.io.sbml.create_cobra_model_from_sbml_file(sbml_filename, old_sbml=False, legacy_metabolite=False, print_time=False, use_hyphens=False)

	convert an SBML XML file into a cobra.Model object.

Supports SBML Level 2 Versions 1 and 4.  The function will detect if the
SBML fbc package is used in the file and run the converter if the fbc
package is used.


	Parameters

	
	sbml_filename (string [https://docs.python.org/2/library/string.html#module-string]) – 


	old_sbml (bool [https://docs.python.org/2/library/functions.html#bool]) – Set to True if the XML file has metabolite formula appended to
metabolite names. This was a poorly designed artifact that persists in
some models.


	legacy_metabolite (bool [https://docs.python.org/2/library/functions.html#bool]) – 
	If True then assume that the metabolite id has the compartment id

	appended after an underscore (e.g. _c for cytosol). This has not been
implemented but will be soon.








	print_time (bool [https://docs.python.org/2/library/functions.html#bool]) – deprecated


	use_hyphens (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, double underscores (__) in an SBML ID will be converted to
hyphens






	Returns

	Model



	Return type

	The parsed cobra model










	
cobra.io.sbml.fix_legacy_id(id, use_hyphens=False, fix_compartments=False)

	




	
cobra.io.sbml.get_libsbml_document(cobra_model, sbml_level=2, sbml_version=1, print_time=False, use_fbc_package=True)

	Return a libsbml document object for writing to a file. This function
is used by write_cobra_model_to_sbml_file().






	
cobra.io.sbml.parse_legacy_id(the_id, the_compartment=None, the_type='metabolite', use_hyphens=False)

	Deals with a bunch of problems due to bigg.ucsd.edu not following SBML
standards


	Parameters

	
	the_id (String.) – 


	the_compartment (String) – 


	the_type (String) – Currently only ‘metabolite’ is supported


	use_hyphens (Boolean) – If True, double underscores (__) in an SBML ID will be converted to
hyphens






	Returns

	string



	Return type

	the identifier










	
cobra.io.sbml.parse_legacy_sbml_notes(note_string, note_delimiter=':')

	Deal with various legacy SBML format issues.






	
cobra.io.sbml.read_legacy_sbml(filename, use_hyphens=False)

	read in an sbml file and fix the sbml id’s






	
cobra.io.sbml.write_cobra_model_to_sbml_file(cobra_model, sbml_filename, sbml_level=2, sbml_version=1, print_time=False, use_fbc_package=True)

	Write a cobra.Model object to an SBML XML file.


	Parameters

	
	cobra_model (cobra.core.Model.Model) – The model object to write


	sbml_filename (string [https://docs.python.org/2/library/string.html#module-string]) – The file to write the SBML XML to.


	sbml_level (int [https://docs.python.org/2/library/functions.html#int]) – 2 is the only supported level.


	sbml_version (int [https://docs.python.org/2/library/functions.html#int]) – 1 is the only supported version.


	print_time (bool [https://docs.python.org/2/library/functions.html#bool]) – deprecated


	use_fbc_package (bool [https://docs.python.org/2/library/functions.html#bool]) – Convert the model to the FBC package format to improve portability.
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/Flux_Balance_Constraints_(flux)








Notes

TODO: Update the NOTES to match the SBML standard and provide support for
Level 2 Version 4









          

      

      

    

  

  
    
    14.1.1.3.1.5. cobra.io.sbml3 module
    

    
 
  
  

    
      
          
            
  


14.1.1.3.1.5. cobra.io.sbml3 module


	
exception cobra.io.sbml3.CobraSBMLError

	Bases: Exception






	
cobra.io.sbml3.annotate_cobra_from_sbml(cobra_element, sbml_element)

	




	
cobra.io.sbml3.annotate_sbml_from_cobra(sbml_element, cobra_element)

	




	
cobra.io.sbml3.clip(string, prefix)

	clips a prefix from the beginning of a string if it exists

>>> clip("R_pgi", "R_")
"pgi"










	
cobra.io.sbml3.construct_gpr_xml(parent, expression)

	create gpr xml under parent node






	
cobra.io.sbml3.get_attrib(tag, attribute, type=<function <lambda>>, require=False)

	




	
cobra.io.sbml3.indent_xml(elem, level=0)

	indent xml for pretty printing






	
cobra.io.sbml3.model_to_xml(cobra_model, units=True)

	




	
cobra.io.sbml3.ns(query)

	replace prefixes with namespace






	
cobra.io.sbml3.parse_stream(filename)

	parses filename or compressed stream to xml






	
cobra.io.sbml3.parse_xml_into_model(xml, number=<class 'float'>)

	




	
cobra.io.sbml3.read_sbml_model(filename, number=<class 'float'>, **kwargs)

	




	
cobra.io.sbml3.set_attrib(xml, attribute_name, value)

	




	
cobra.io.sbml3.strnum(number)

	Utility function to convert a number to a string






	
cobra.io.sbml3.validate_sbml_model(filename, check_model=True)

	Returns the model along with a list of errors.


	Parameters

	
	filename (str [https://docs.python.org/2/library/functions.html#str]) – The filename of the SBML model to be validated.


	check_model (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Whether to also check some basic model properties such as reaction
boundaries and compartment formulas.






	Returns

	
	model (Model object) – The cobra model if the file could be read succesfully or None
otherwise.


	errors (dict) – Warnings and errors grouped by their respective types.








	Raises

	CobraSBMLError – If the file is not a valid SBML Level 3 file with FBC.










	
cobra.io.sbml3.write_sbml_model(cobra_model, filename, use_fbc_package=True, **kwargs)

	







          

      

      

    

  

  
    
    14.1.1.3.1.6. cobra.io.yaml module
    

    
 
  
  

    
      
          
            
  


14.1.1.3.1.6. cobra.io.yaml module


	
cobra.io.yaml.from_yaml(document)

	Load a cobra model from a YAML document.


	Parameters

	document (str [https://docs.python.org/2/library/functions.html#str]) – The YAML document representation of a cobra model.



	Returns

	The cobra model as represented in the YAML document.



	Return type

	cobra.Model






See also


	load_yaml_model()

	Load directly from a file.












	
cobra.io.yaml.load_yaml_model(filename)

	Load a cobra model from a file in YAML format.


	Parameters

	filename (str [https://docs.python.org/2/library/functions.html#str] or file-like) – File path or descriptor that contains the YAML document describing the
cobra model.



	Returns

	The cobra model as represented in the YAML document.



	Return type

	cobra.Model






See also


	from_yaml()

	Load from a string.












	
cobra.io.yaml.save_yaml_model(model, filename, sort=False, **kwargs)

	Write the cobra model to a file in YAML format.

kwargs are passed on to yaml.dump.


	Parameters

	
	model (cobra.Model) – The cobra model to represent.


	filename (str [https://docs.python.org/2/library/functions.html#str] or file-like) – File path or descriptor that the YAML representation should be
written to.


	sort (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Whether to sort the metabolites, reactions, and genes or maintain the
order defined in the model.









See also


	to_yaml()

	Return a string representation.



	ruamel.yaml.dump()

	Base function.












	
cobra.io.yaml.to_yaml(model, sort=False, **kwargs)

	Return the model as a YAML document.

kwargs are passed on to yaml.dump.


	Parameters

	
	model (cobra.Model) – The cobra model to represent.


	sort (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Whether to sort the metabolites, reactions, and genes or maintain the
order defined in the model.






	Returns

	String representation of the cobra model as a YAML document.



	Return type

	str [https://docs.python.org/2/library/functions.html#str]






See also


	save_yaml_model()

	Write directly to a file.



	ruamel.yaml.dump()

	Base function.















          

      

      

    

  

  
    
    14.1.1.4. cobra.manipulation package
    

    
 
  
  

    
      
          
            
  


14.1.1.4. cobra.manipulation package


14.1.1.4.1. Submodules



	14.1.1.4.1.1. cobra.manipulation.annotate module

	14.1.1.4.1.2. cobra.manipulation.delete module

	14.1.1.4.1.3. cobra.manipulation.modify module

	14.1.1.4.1.4. cobra.manipulation.validate module








14.1.1.4.2. Module contents







          

      

      

    

  

  
    
    14.1.1.4.1.1. cobra.manipulation.annotate module
    

    
 
  
  

    
      
          
            
  


14.1.1.4.1.1. cobra.manipulation.annotate module


	
cobra.manipulation.annotate.add_SBO(model)

	adds SBO terms for demands and exchanges

This works for models which follow the standard convention for
constructing and naming these reactions.

The reaction should only contain the single metabolite being exchanged,
and the id should be EX_metid or DM_metid









          

      

      

    

  

  
    
    14.1.1.4.1.2. cobra.manipulation.delete module
    

    
 
  
  

    
      
          
            
  


14.1.1.4.1.2. cobra.manipulation.delete module


	
cobra.manipulation.delete.delete_model_genes(cobra_model, gene_list, cumulative_deletions=True, disable_orphans=False)

	delete_model_genes will set the upper and lower bounds for reactions
catalysed by the genes in gene_list if deleting the genes means that
the reaction cannot proceed according to
cobra_model.reactions[:].gene_reaction_rule

cumulative_deletions: False or True.  If True then any previous
deletions will be maintained in the model.






	
cobra.manipulation.delete.find_gene_knockout_reactions(cobra_model, gene_list, compiled_gene_reaction_rules=None)

	identify reactions which will be disabled when the genes are knocked out

cobra_model: Model

gene_list: iterable of Gene


	compiled_gene_reaction_rules: dict of {reaction_id: compiled_string}

	If provided, this gives pre-compiled gene_reaction_rule strings.
The compiled rule strings can be evaluated much faster. If a rule
is not provided, the regular expression evaluation will be used.
Because not all gene_reaction_rule strings can be evaluated, this
dict must exclude any rules which can not be used with eval.










	
cobra.manipulation.delete.get_compiled_gene_reaction_rules(cobra_model)

	Generates a dict of compiled gene_reaction_rules

Any gene_reaction_rule expressions which cannot be compiled or do not
evaluate after compiling will be excluded. The result can be used in the
find_gene_knockout_reactions function to speed up evaluation of these
rules.






	
cobra.manipulation.delete.prune_unused_metabolites(cobra_model)

	Remove metabolites that are not involved in any reactions


	Parameters

	cobra_model (cobra.Model) – the model to remove unused metabolites from



	Returns

	list of metabolites that were removed



	Return type

	list










	
cobra.manipulation.delete.prune_unused_reactions(cobra_model)

	Remove reactions that have no assigned metabolites


	Parameters

	cobra_model (cobra.Model) – the model to remove unused reactions from



	Returns

	list of reactions that were removed



	Return type

	list










	
cobra.manipulation.delete.remove_genes(cobra_model, gene_list, remove_reactions=True)

	remove genes entirely from the model

This will also simplify all gene_reaction_rules with this
gene inactivated.






	
cobra.manipulation.delete.undelete_model_genes(cobra_model)

	Undoes the effects of a call to delete_model_genes in place.

cobra_model:  A cobra.Model which will be modified in place









          

      

      

    

  

  
    
    14.1.1.4.1.3. cobra.manipulation.modify module
    

    
 
  
  

    
      
          
            
  


14.1.1.4.1.3. cobra.manipulation.modify module


	
cobra.manipulation.modify.convert_to_irreversible(cobra_model)

	Split reversible reactions into two irreversible reactions

These two reactions will proceed in opposite directions. This
guarentees that all reactions in the model will only allow
positive flux values, which is useful for some modeling problems.

cobra_model: A Model object which will be modified in place.






	
cobra.manipulation.modify.escape_ID(cobra_model)

	makes all ids SBML compliant






	
cobra.manipulation.modify.rename_genes(cobra_model, rename_dict)

	renames genes in a model from the rename_dict






	
cobra.manipulation.modify.revert_to_reversible(cobra_model, update_solution=True)

	This function will convert an irreversible model made by
convert_to_irreversible into a reversible model.


	cobra_modelcobra.Model

	A model which will be modified in place.



	update_solution: bool

	This option is ignored since model.solution was removed.













          

      

      

    

  

  
    
    14.1.1.4.1.4. cobra.manipulation.validate module
    

    
 
  
  

    
      
          
            
  


14.1.1.4.1.4. cobra.manipulation.validate module


	
cobra.manipulation.validate.check_mass_balance(model)

	




	
cobra.manipulation.validate.check_metabolite_compartment_formula(model)

	




	
cobra.manipulation.validate.check_reaction_bounds(model)

	







          

      

      

    

  

  
    
    14.1.1.5. cobra.test package
    

    
 
  
  

    
      
          
            
  


14.1.1.5. cobra.test package


14.1.1.5.1. Submodules



	14.1.1.5.1.1. cobra.test.conftest module

	14.1.1.5.1.2. cobra.test.test_flux_analysis module

	14.1.1.5.1.3. cobra.test.test_io module

	14.1.1.5.1.4. cobra.test.test_io_order module

	14.1.1.5.1.5. cobra.test.test_manipulation module

	14.1.1.5.1.6. cobra.test.test_model module

	14.1.1.5.1.7. cobra.test.test_solver_model module

	14.1.1.5.1.8. cobra.test.test_solver_utils module

	14.1.1.5.1.9. cobra.test.test_util module








14.1.1.5.2. Module contents


	
cobra.test.create_test_model(model_name='salmonella')

	Returns a cobra model for testing


	model_name: str

	One of ‘ecoli’, ‘textbook’, or ‘salmonella’, or the
path to a pickled cobra.Model










	
cobra.test.test_all(args=None)

	alias for running all unit-tests on installed cobra











          

      

      

    

  

  
    
    14.1.1.5.1.1. cobra.test.conftest module
    

    
 
  
  

    
      
          
            
  


14.1.1.5.1.1. cobra.test.conftest module





          

      

      

    

  

  
    
    14.1.1.5.1.2. cobra.test.test_flux_analysis module
    

    
 
  
  

    
      
          
            
  


14.1.1.5.1.2. cobra.test.test_flux_analysis module





          

      

      

    

  

  
    
    14.1.1.5.1.3. cobra.test.test_io module
    

    
 
  
  

    
      
          
            
  


14.1.1.5.1.3. cobra.test.test_io module





          

      

      

    

  

  
    
    14.1.1.5.1.4. cobra.test.test_io_order module
    

    
 
  
  

    
      
          
            
  


14.1.1.5.1.4. cobra.test.test_io_order module





          

      

      

    

  

  
    
    14.1.1.5.1.5. cobra.test.test_manipulation module
    

    
 
  
  

    
      
          
            
  


14.1.1.5.1.5. cobra.test.test_manipulation module





          

      

      

    

  

  
    
    14.1.1.5.1.6. cobra.test.test_model module
    

    
 
  
  

    
      
          
            
  


14.1.1.5.1.6. cobra.test.test_model module





          

      

      

    

  

  
    
    14.1.1.5.1.7. cobra.test.test_solver_model module
    

    
 
  
  

    
      
          
            
  


14.1.1.5.1.7. cobra.test.test_solver_model module





          

      

      

    

  

  
    
    14.1.1.5.1.8. cobra.test.test_solver_utils module
    

    
 
  
  

    
      
          
            
  


14.1.1.5.1.8. cobra.test.test_solver_utils module





          

      

      

    

  

  
    
    14.1.1.5.1.9. cobra.test.test_util module
    

    
 
  
  

    
      
          
            
  


14.1.1.5.1.9. cobra.test.test_util module





          

      

      

    

  

  
    
    14.1.1.6. cobra.util package
    

    
 
  
  

    
      
          
            
  


14.1.1.6. cobra.util package


14.1.1.6.1. Submodules



	14.1.1.6.1.1. cobra.util.array module

	14.1.1.6.1.2. cobra.util.context module

	14.1.1.6.1.3. cobra.util.solver module

	14.1.1.6.1.4. cobra.util.util module

	14.1.1.6.1.5. cobra.util.version_info module








14.1.1.6.2. Module contents







          

      

      

    

  

  
    
    14.1.1.6.1.1. cobra.util.array module
    

    
 
  
  

    
      
          
            
  


14.1.1.6.1.1. cobra.util.array module


	
cobra.util.array.constraint_matrices(model, array_type='dense', include_vars=False, zero_tol=1e-06)

	Create a matrix representation of the problem.

This is used for alternative solution approaches that do not use optlang.
The function will construct the equality matrix, inequality matrix and
bounds for the complete problem.

Notes

To accomodate non-zero equalities the problem will add the variable
“const_one” which is a variable that equals one.


	Parameters

	
	model (cobra.Model) – The model from which to obtain the LP problem.


	array_type (string [https://docs.python.org/2/library/string.html#module-string]) – The type of array to construct. if ‘dense’, return a standard
numpy.array, ‘dok’, or ‘lil’ will construct a sparse array using
scipy of the corresponding type and ‘DataFrame’ will give a
pandas DataFrame with metabolite indices and reaction columns.


	zero_tol (float [https://docs.python.org/2/library/functions.html#float]) – The zero tolerance used to judge whether two bounds are the same.






	Returns

	A named tuple consisting of 6 matrices and 2 vectors:
- “equalities” is a matrix S such that S*vars = b. It includes a row


for each constraint and one column for each variable.





	”b” the right side of the equality equation such that S*vars = b.


	”inequalities” is a matrix M such that lb <= M*vars <= ub.
It contains a row for each inequality and as many columns as
variables.


	”bounds” is a compound matrix [lb ub] containing the lower and
upper bounds for the inequality constraints in M.


	”variable_fixed” is a boolean vector indicating whether the variable
at that index is fixed (lower bound == upper_bound) and
is thus bounded by an equality constraint.


	”variable_bounds” is a compound matrix [lb ub] containing the
lower and upper bounds for all variables.








	Return type

	collections.namedtuple [https://docs.python.org/2/library/collections.html#collections.namedtuple]










	
cobra.util.array.create_stoichiometric_matrix(model, array_type='dense', dtype=None)

	Return a stoichiometric array representation of the given model.

The the columns represent the reactions and rows represent
metabolites. S[i,j] therefore contains the quantity of metabolite i
produced (negative for consumed) by reaction j.


	Parameters

	
	model (cobra.Model) – The cobra model to construct the matrix for.


	array_type (string [https://docs.python.org/2/library/string.html#module-string]) – The type of array to construct. if ‘dense’, return a standard
numpy.array, ‘dok’, or ‘lil’ will construct a sparse array using
scipy of the corresponding type and ‘DataFrame’ will give a
pandas DataFrame with metabolite indices and reaction columns


	dtype (data-type) – The desired data-type for the array. If not given, defaults to float.






	Returns

	The stoichiometric matrix for the given model.



	Return type

	matrix of class dtype










	
cobra.util.array.nullspace(A, atol=1e-13, rtol=0)

	Compute an approximate basis for the nullspace of A.
The algorithm used by this function is based on the singular value
decomposition of A.


	Parameters

	
	A (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A should be at most 2-D.  A 1-D array with length k will be treated
as a 2-D with shape (1, k)


	atol (float [https://docs.python.org/2/library/functions.html#float]) – The absolute tolerance for a zero singular value.  Singular values
smaller than atol are considered to be zero.


	rtol (float [https://docs.python.org/2/library/functions.html#float]) – The relative tolerance.  Singular values less than rtol*smax are
considered to be zero, where smax is the largest singular value.


	both atol and rtol are positive, the combined tolerance is the (If) – 








:param maximum of the two; that is:::
:param tol = max(atol, rtol * smax):
:param Singular values smaller than tol are considered to be zero.:


	Returns

	If A is an array with shape (m, k), then ns will be an array
with shape (k, n), where n is the estimated dimension of the
nullspace of A.  The columns of ns are a basis for the
nullspace; each element in numpy.dot(A, ns) will be approximately
zero.



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]





Notes

Taken from the numpy cookbook.









          

      

      

    

  

  
    
    14.1.1.6.1.2. cobra.util.context module
    

    
 
  
  

    
      
          
            
  


14.1.1.6.1.2. cobra.util.context module


	
class cobra.util.context.HistoryManager

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Record a list of actions to be taken at a later time. Used to
implement context managers that allow temporary changes to a
Model.


	
reset()

	Trigger executions for all items in the stack in reverse order










	
cobra.util.context.get_context(obj)

	Search for a context manager






	
cobra.util.context.resettable(f)

	A decorator to simplify the context management of simple object
attributes. Gets the value of the attribute prior to setting it, and stores
a function to set the value to the old value in the HistoryManager.









          

      

      

    

  

  
    
    14.1.1.6.1.3. cobra.util.solver module
    

    
 
  
  

    
      
          
            
  


14.1.1.6.1.3. cobra.util.solver module

Additional helper functions for the optlang solvers.

All functions integrate well with the context manager, meaning that
all operations defined here are automatically reverted when used in a
with model: block.

The functions defined here together with the existing model functions should
allow you to implement custom flux analysis methods with ease.


	
cobra.util.solver.add_absolute_expression(model, expression, name='abs_var', ub=None, difference=0, add=True)

	Add the absolute value of an expression to the model.

Also defines a variable for the absolute value that can be used in other
objectives or constraints.


	Parameters

	
	model (a cobra model) – The model to which to add the absolute expression.


	expression (A sympy expression) – Must be a valid expression within the Model’s solver object. The
absolute value is applied automatically on the expression.


	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the newly created variable.


	ub (positive float) – The upper bound for the variable.


	difference (positive float) – The difference between the expression and the variable.


	add (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether to add the variable to the model at once.






	Returns

	A named tuple with variable and two constraints (upper_constraint,
lower_constraint) describing the new variable and the constraints
that assign the absolute value of the expression to it.



	Return type

	namedtuple










	
cobra.util.solver.add_cons_vars_to_problem(model, what, **kwargs)

	Add variables and constraints to a Model’s solver object.

Useful for variables and constraints that can not be expressed with
reactions and lower/upper bounds. Will integrate with the Model’s context
manager in order to revert changes upon leaving the context.


	Parameters

	
	model (a cobra model) – The model to which to add the variables and constraints.


	what (list or tuple of optlang variables or constraints.) – The variables or constraints to add to the model. Must be of class
model.problem.Variable or
model.problem.Constraint.


	**kwargs (keyword arguments) – passed to solver.add()













	
cobra.util.solver.assert_optimal(model, message='optimization failed')

	Assert model solver status is optimal.

Do nothing if model solver status is optimal, otherwise throw
appropriate exception depending on the status.


	Parameters

	
	model (cobra.Model) – The model to check the solver status for.


	message (str [https://docs.python.org/2/library/functions.html#str] (optional)) – Message to for the exception if solver status was not optimal.













	
cobra.util.solver.check_solver_status(status, raise_error=False)

	Perform standard checks on a solver’s status.






	
cobra.util.solver.choose_solver(model, solver=None, qp=False)

	Choose a solver given a solver name and model.

This will choose a solver compatible with the model and required
capabilities. Also respects model.solver where it can.


	Parameters

	
	model (a cobra model) – The model for which to choose the solver.


	solver (str [https://docs.python.org/2/library/functions.html#str], optional) – The name of the solver to be used.


	qp (boolean, optional) – Whether the solver needs Quadratic Programming capabilities.






	Returns

	solver – Returns a valid solver for the problem.



	Return type

	an optlang solver interface



	Raises

	SolverNotFound – If no suitable solver could be found.










	
cobra.util.solver.fix_objective_as_constraint(model, fraction=1, bound=None, name='fixed_objective_{}')

	Fix current objective as an additional constraint.

When adding constraints to a model, such as done in pFBA which
minimizes total flux, these constraints can become too powerful,
resulting in solutions that satisfy optimality but sacrifices too
much for the original objective function. To avoid that, we can fix
the current objective value as a constraint to ignore solutions that
give a lower (or higher depending on the optimization direction)
objective value than the original model.

When done with the model as a context, the modification to the
objective will be reverted when exiting that context.


	Parameters

	
	model (cobra.Model) – The model to operate on


	fraction (float [https://docs.python.org/2/library/functions.html#float]) – The fraction of the optimum the objective is allowed to reach.


	bound (float [https://docs.python.org/2/library/functions.html#float], None [https://docs.python.org/2/library/constants.html#None]) – The bound to use instead of fraction of maximum optimal value. If
not None, fraction is ignored.


	name (str [https://docs.python.org/2/library/functions.html#str]) – Name of the objective. May contain one {} placeholder which is filled
with the name of the old objective.













	
cobra.util.solver.get_solver_name(mip=False, qp=False)

	Select a solver for a given optimization problem.


	Parameters

	
	mip (bool [https://docs.python.org/2/library/functions.html#bool]) – Does the solver require mixed integer linear programming capabilities?


	qp (bool [https://docs.python.org/2/library/functions.html#bool]) – Does the solver require quadratic programming capabilities?






	Returns

	The name of feasible solver.



	Return type

	string [https://docs.python.org/2/library/string.html#module-string]



	Raises

	SolverNotFound – If no suitable solver could be found.










	
cobra.util.solver.interface_to_str(interface)

	Give a string representation for an optlang interface.


	Parameters

	interface (string [https://docs.python.org/2/library/string.html#module-string], ModuleType) – Full name of the interface in optlang or cobra representation.
For instance ‘optlang.glpk_interface’ or ‘optlang-glpk’.



	Returns

	The name of the interface as a string



	Return type

	string [https://docs.python.org/2/library/string.html#module-string]










	
cobra.util.solver.linear_reaction_coefficients(model, reactions=None)

	Coefficient for the reactions in a linear objective.


	Parameters

	
	model (cobra model) – the model object that defined the objective


	reactions (list) – an optional list for the reactions to get the coefficients for. All
reactions if left missing.






	Returns

	A dictionary where the key is the reaction object and the value is
the corresponding coefficient. Empty dictionary if there are no
linear terms in the objective.



	Return type

	dict










	
cobra.util.solver.remove_cons_vars_from_problem(model, what)

	Remove variables and constraints from a Model’s solver object.

Useful to temporarily remove variables and constraints from a Models’s
solver object.


	Parameters

	
	model (a cobra model) – The model from which to remove the variables and constraints.


	what (list or tuple of optlang variables or constraints.) – The variables or constraints to remove from the model. Must be of
class model.problem.Variable or
model.problem.Constraint.













	
cobra.util.solver.set_objective(model, value, additive=False)

	Set the model objective.


	Parameters

	
	model (cobra model) – The model to set the objective for


	value (model.problem.Objective,) – e.g. optlang.glpk_interface.Objective, sympy.Basic or dict

If the model objective is linear, the value can be a new Objective
object or a dictionary with linear coefficients where each key is a
reaction and the element the new coefficient (float).

If the objective is not linear and additive is true, only values
of class Objective.




	additive (boolmodel.reactions.Biomass_Ecoli_core.bounds = (0.1, 0.1)) – If true, add the terms to the current objective, otherwise start with
an empty objective.
















          

      

      

    

  

  
    
    14.1.1.6.1.4. cobra.util.util module
    

    
 
  
  

    
      
          
            
  


14.1.1.6.1.4. cobra.util.util module


	
class cobra.util.util.AutoVivification

	Bases: dict [https://docs.python.org/2/library/stdtypes.html#dict]

Implementation of perl’s autovivification feature. Checkout
http://stackoverflow.com/a/652284/280182






	
cobra.util.util.format_long_string(string, max_length=50)

	







          

      

      

    

  

  
    
    14.1.1.6.1.5. cobra.util.version_info module
    

    
 
  
  

    
      
          
            
  


14.1.1.6.1.5. cobra.util.version_info module


	
cobra.util.version_info.show_versions()

	Print the formatted information to standard out.









          

      

      

    

  

  
    
    14.1.2.1. cobra.config module
    

    
 
  
  

    
      
          
            
  


14.1.2.1. cobra.config module





          

      

      

    

  

  
    
    14.1.2.2. cobra.exceptions module
    

    
 
  
  

    
      
          
            
  


14.1.2.2. cobra.exceptions module


	
exception cobra.exceptions.FeasibleButNotOptimal(message)

	Bases: cobra.exceptions.OptimizationError






	
exception cobra.exceptions.Infeasible(message)

	Bases: cobra.exceptions.OptimizationError






	
exception cobra.exceptions.OptimizationError(message)

	Bases: Exception






	
exception cobra.exceptions.SolverNotFound

	Bases: Exception

A simple Exception when a solver can not be found.






	
exception cobra.exceptions.Unbounded(message)

	Bases: cobra.exceptions.OptimizationError






	
exception cobra.exceptions.UndefinedSolution(message)

	Bases: cobra.exceptions.OptimizationError









          

      

      

    

  

  
    
    Python Module Index
    

    

 


  
  

    
      
          
            

   Python Module Index


   
   c
   


   
     		 	

     		
       c	

     
       	[image: -]
       	
       cobra	
       

     
       	
       	   
       cobra.config	
       

     
       	
       	   
       cobra.core	
       

     
       	
       	   
       cobra.core.dictlist	
       

     
       	
       	   
       cobra.core.formula	
       

     
       	
       	   
       cobra.core.gene	
       

     
       	
       	   
       cobra.core.metabolite	
       

     
       	
       	   
       cobra.core.model	
       

     
       	
       	   
       cobra.core.object	
       

     
       	
       	   
       cobra.core.reaction	
       

     
       	
       	   
       cobra.core.solution	
       

     
       	
       	   
       cobra.core.species	
       

     
       	
       	   
       cobra.exceptions	
       

     
       	
       	   
       cobra.flux_analysis	
       

     
       	
       	   
       cobra.flux_analysis.deletion	
       

     
       	
       	   
       cobra.flux_analysis.gapfilling	
       

     
       	
       	   
       cobra.flux_analysis.loopless	
       

     
       	
       	   
       cobra.flux_analysis.moma	
       

     
       	
       	   
       cobra.flux_analysis.parsimonious	
       

     
       	
       	   
       cobra.flux_analysis.phenotype_phase_plane	
       

     
       	
       	   
       cobra.flux_analysis.reaction	
       

     
       	
       	   
       cobra.flux_analysis.sampling	
       

     
       	
       	   
       cobra.flux_analysis.summary	
       

     
       	
       	   
       cobra.flux_analysis.variability	
       

     
       	
       	   
       cobra.io	
       

     
       	
       	   
       cobra.io.dict	
       

     
       	
       	   
       cobra.io.json	
       

     
       	
       	   
       cobra.io.mat	
       

     
       	
       	   
       cobra.io.sbml	
       

     
       	
       	   
       cobra.io.sbml3	
       

     
       	
       	   
       cobra.io.yaml	
       

     
       	
       	   
       cobra.manipulation	
       

     
       	
       	   
       cobra.manipulation.annotate	
       

     
       	
       	   
       cobra.manipulation.delete	
       

     
       	
       	   
       cobra.manipulation.modify	
       

     
       	
       	   
       cobra.manipulation.validate	
       

     
       	
       	   
       cobra.test	
       

     
       	
       	   
       cobra.util	
       

     
       	
       	   
       cobra.util.array	
       

     
       	
       	   
       cobra.util.context	
       

     
       	
       	   
       cobra.util.solver	
       

     
       	
       	   
       cobra.util.util	
       

     
       	
       	   
       cobra.util.version_info	
       

   



          

      

      

    

  

  
    
    Index
    

    
 
  
  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 


A


  	
      	ACHRSampler (class in cobra.flux_analysis.sampling)


      	add() (cobra.core.dictlist.DictList method)


      	add_absolute_expression() (in module cobra.util.solver)


      	add_boundary() (cobra.core.model.Model method)


      	add_cons_vars() (cobra.core.model.Model method)


      	add_cons_vars_to_problem() (in module cobra.util.solver)


      	add_envelope() (in module cobra.flux_analysis.phenotype_phase_plane)


      	add_loopless() (in module cobra.flux_analysis.loopless)


      	add_metabolites() (cobra.core.model.Model method)

      
        	(cobra.core.reaction.Reaction method)


      


      	add_moma() (in module cobra.flux_analysis.moma)


      	add_pfba() (in module cobra.flux_analysis.parsimonious)


      	add_reaction() (cobra.core.model.Model method)


  

  	
      	add_reactions() (cobra.core.model.Model method)


      	add_sbml_species() (in module cobra.io.sbml)


      	add_SBO() (in module cobra.manipulation.annotate)


      	add_switches_and_objective() (cobra.flux_analysis.gapfilling.GapFiller method)


      	annotate_cobra_from_sbml() (in module cobra.io.sbml3)


      	annotate_sbml_from_cobra() (in module cobra.io.sbml3)


      	append() (cobra.core.dictlist.DictList method)


      	assert_optimal() (in module cobra.util.solver)


      	assess() (in module cobra.flux_analysis.reaction)


      	assess_component() (in module cobra.flux_analysis.reaction)


      	assess_precursors() (in module cobra.flux_analysis.reaction)


      	assess_products() (in module cobra.flux_analysis.reaction)


      	ast2str() (in module cobra.core.gene)


      	AutoVivification (class in cobra.util.util)


  





B


  	
      	b (cobra.flux_analysis.sampling.Problem attribute), [1]


      	batch() (cobra.flux_analysis.sampling.HRSampler method)


      	boundary (cobra.core.reaction.Reaction attribute)


      	bounds (cobra.core.reaction.Reaction attribute)

      
        	(cobra.flux_analysis.sampling.Problem attribute), [1]


      


  

  	
      	bounds_tol (in module cobra.flux_analysis.sampling)


      	build_reaction_from_string() (cobra.core.reaction.Reaction method)


      	build_reaction_string() (cobra.core.reaction.Reaction method)


  





C


  	
      	center (cobra.flux_analysis.sampling.ACHRSampler attribute)

      
        	(cobra.flux_analysis.sampling.OptGPSampler attribute)


      


      	check_mass_balance() (cobra.core.reaction.Reaction method)

      
        	(in module cobra.manipulation.validate)


      


      	check_metabolite_compartment_formula() (in module cobra.manipulation.validate)


      	check_reaction_bounds() (in module cobra.manipulation.validate)


      	check_solver_status() (in module cobra.util.solver)


      	choose_solver() (in module cobra.util.solver)


      	clip() (in module cobra.io.sbml3)


      	cobra (module)


      	cobra.config (module)


      	cobra.core (module)


      	cobra.core.dictlist (module)


      	cobra.core.formula (module)


      	cobra.core.gene (module)


      	cobra.core.metabolite (module)


      	cobra.core.model (module)


      	cobra.core.object (module)


      	cobra.core.reaction (module)


      	cobra.core.solution (module)


      	cobra.core.species (module)


      	cobra.exceptions (module)


      	cobra.flux_analysis (module)


      	cobra.flux_analysis.deletion (module)


      	cobra.flux_analysis.gapfilling (module)


      	cobra.flux_analysis.loopless (module)


      	cobra.flux_analysis.moma (module)


      	cobra.flux_analysis.parsimonious (module)


      	cobra.flux_analysis.phenotype_phase_plane (module)


      	cobra.flux_analysis.reaction (module)


      	cobra.flux_analysis.sampling (module)


      	cobra.flux_analysis.summary (module)


      	cobra.flux_analysis.variability (module)


      	cobra.io (module)


  

  	
      	cobra.io.dict (module)


      	cobra.io.json (module)


      	cobra.io.mat (module)


      	cobra.io.sbml (module)


      	cobra.io.sbml3 (module)


      	cobra.io.yaml (module)


      	cobra.manipulation (module)


      	cobra.manipulation.annotate (module)


      	cobra.manipulation.delete (module)


      	cobra.manipulation.modify (module)


      	cobra.manipulation.validate (module)


      	cobra.test (module)


      	cobra.util (module)


      	cobra.util.array (module)


      	cobra.util.context (module)


      	cobra.util.solver (module)


      	cobra.util.util (module)


      	cobra.util.version_info (module)


      	CobraSBMLError


      	compartments (cobra.core.model.Model attribute)

      
        	(cobra.core.reaction.Reaction attribute)


      


      	constraint (cobra.core.metabolite.Metabolite attribute)


      	constraint_matrices() (in module cobra.util.array)


      	constraints (cobra.core.model.Model attribute)


      	construct_gpr_xml() (in module cobra.io.sbml3)


      	construct_loopless_model() (in module cobra.flux_analysis.loopless)


      	convert_to_irreversible() (in module cobra.manipulation.modify)


      	copy() (cobra.core.model.Model method)

      
        	(cobra.core.reaction.Reaction method)


        	(cobra.core.species.Species method)


      


      	create_cobra_model_from_sbml_file() (in module cobra.io.sbml)


      	create_mat_dict() (in module cobra.io.mat)


      	create_mat_metabolite_id() (in module cobra.io.mat)


      	create_stoichiometric_matrix() (in module cobra.util.array)


      	create_test_model() (in module cobra.test)


  





D


  	
      	delete() (cobra.core.reaction.Reaction method)


      	delete_model_genes() (in module cobra.manipulation.delete)


      	description (cobra.core.model.Model attribute)


  

  	
      	DictList (class in cobra.core.dictlist)


      	double_gene_deletion() (in module cobra.flux_analysis.deletion)


      	double_reaction_deletion() (in module cobra.flux_analysis.deletion)


      	dress_results() (cobra.core.solution.LegacySolution method)


  





E


  	
      	elements (cobra.core.metabolite.Metabolite attribute)


      	equalities (cobra.flux_analysis.sampling.Problem attribute), [1]


      	escape_ID() (in module cobra.manipulation.modify)


  

  	
      	eval_gpr() (in module cobra.core.gene)


      	exchanges (cobra.core.model.Model attribute)


      	extend() (cobra.core.dictlist.DictList method)


      	extend_model() (cobra.flux_analysis.gapfilling.GapFiller method)


  





F


  	
      	f (cobra.core.solution.LegacySolution attribute)

      
        	(cobra.core.solution.Solution attribute), [1]


      


      	feasibility_tol (in module cobra.flux_analysis.sampling)


      	FeasibleButNotOptimal


      	fill() (cobra.flux_analysis.gapfilling.GapFiller method)


      	find_blocked_reactions() (in module cobra.flux_analysis.variability)


      	find_carbon_sources() (in module cobra.flux_analysis.phenotype_phase_plane)


      	find_essential_genes() (in module cobra.flux_analysis.variability)


      	find_essential_reactions() (in module cobra.flux_analysis.variability)


      	find_gene_knockout_reactions() (in module cobra.manipulation.delete)


      	fix_legacy_id() (in module cobra.io.sbml)


      	fix_objective_as_constraint() (in module cobra.util.solver)


      	flux (cobra.core.reaction.Reaction attribute)


      	flux_expression (cobra.core.reaction.Reaction attribute)


  

  	
      	flux_variability_analysis() (in module cobra.flux_analysis.variability)


      	fluxes (cobra.core.solution.Solution attribute)


      	format_long_string() (in module cobra.util.util)


      	Formula (class in cobra.core.formula)


      	formula_weight (cobra.core.metabolite.Metabolite attribute)


      	forward_variable (cobra.core.reaction.Reaction attribute)


      	from_json() (in module cobra.io.json)


      	from_mat_struct() (in module cobra.io.mat)


      	from_yaml() (in module cobra.io.yaml)


      	functional (cobra.core.gene.Gene attribute)

      
        	(cobra.core.reaction.Reaction attribute)


      


      	fwd_idx (cobra.flux_analysis.sampling.ACHRSampler attribute)

      
        	(cobra.flux_analysis.sampling.HRSampler attribute)


        	(cobra.flux_analysis.sampling.OptGPSampler attribute)


      


  





G


  	
      	gapfill() (in module cobra.flux_analysis.gapfilling)


      	GapFiller (class in cobra.flux_analysis.gapfilling)


      	Gene (class in cobra.core.gene)


      	gene_from_dict() (in module cobra.io.dict)


      	gene_name_reaction_rule (cobra.core.reaction.Reaction attribute)


      	gene_reaction_rule (cobra.core.reaction.Reaction attribute)


      	gene_to_dict() (in module cobra.io.dict)


      	generate_fva_warmup() (cobra.flux_analysis.sampling.HRSampler method)


      	genes (cobra.core.model.Model attribute)

      
        	(cobra.core.reaction.Reaction attribute)


      


      	get_attrib() (in module cobra.io.sbml3)


      	get_by_any() (cobra.core.dictlist.DictList method)


  

  	
      	get_by_id() (cobra.core.dictlist.DictList method)


      	get_coefficient() (cobra.core.reaction.Reaction method)


      	get_coefficients() (cobra.core.reaction.Reaction method)


      	get_compartments() (cobra.core.reaction.Reaction method)


      	get_compiled_gene_reaction_rules() (in module cobra.manipulation.delete)


      	get_context() (in module cobra.util.context)


      	get_libsbml_document() (in module cobra.io.sbml)


      	get_metabolite_compartments() (cobra.core.model.Model method)


      	get_primal_by_id() (cobra.core.solution.Solution method)


      	get_solution() (in module cobra.core.solution)


      	get_solver_name() (in module cobra.util.solver)


      	GPRCleaner (class in cobra.core.gene)


  





H


  	
      	has_id() (cobra.core.dictlist.DictList method)


      	HistoryManager (class in cobra.util.context)


  

  	
      	homogeneous (cobra.flux_analysis.sampling.Problem attribute), [1]


      	HRSampler (class in cobra.flux_analysis.sampling)


  





I


  	
      	id (cobra.core.object.Object attribute)


      	indent_xml() (in module cobra.io.sbml3)


      	index() (cobra.core.dictlist.DictList method)


  

  	
      	inequalities (cobra.flux_analysis.sampling.Problem attribute), [1]


      	Infeasible


      	insert() (cobra.core.dictlist.DictList method)


      	interface_to_str() (in module cobra.util.solver)


  





K


  	
      	knock_out() (cobra.core.gene.Gene method)

      
        	(cobra.core.reaction.Reaction method)


      


  





L


  	
      	LegacySolution (class in cobra.core.solution)


      	linear_reaction_coefficients() (in module cobra.util.solver)


      	list_attr() (cobra.core.dictlist.DictList method)


      	load_json_model() (in module cobra.io.json)


      	load_matlab_model() (in module cobra.io.mat)


  

  	
      	load_yaml_model() (in module cobra.io.yaml)


      	LOGGER (in module cobra.flux_analysis.sampling)


      	loopless_fva_iter() (in module cobra.flux_analysis.loopless)


      	loopless_solution() (in module cobra.flux_analysis.loopless)


      	lower_bound (cobra.core.reaction.Reaction attribute)


  





M


  	
      	medium (cobra.core.model.Model attribute)


      	merge() (cobra.core.model.Model method)


      	Metabolite (class in cobra.core.metabolite)


      	metabolite_from_dict() (in module cobra.io.dict)


      	metabolite_summary() (in module cobra.flux_analysis.summary)


      	metabolite_to_dict() (in module cobra.io.dict)


      	metabolites (cobra.core.model.Model attribute)

      
        	(cobra.core.reaction.Reaction attribute)


      


      	Model (class in cobra.core.model)


      	model (cobra.core.reaction.Reaction attribute)

      
        	(cobra.core.species.Species attribute)


        	(cobra.flux_analysis.sampling.ACHRSampler attribute)


        	(cobra.flux_analysis.sampling.HRSampler attribute)


        	(cobra.flux_analysis.sampling.OptGPSampler attribute)


      


  

  	
      	model_from_dict() (in module cobra.io.dict)


      	model_summary() (in module cobra.flux_analysis.summary)


      	model_to_dict() (in module cobra.io.dict)


      	model_to_pymatbridge() (in module cobra.io.mat)


      	model_to_xml() (in module cobra.io.sbml3)


      	mp_init() (in module cobra.flux_analysis.sampling)


  





N


  	
      	n_samples (cobra.flux_analysis.sampling.ACHRSampler attribute)

      
        	(cobra.flux_analysis.sampling.HRSampler attribute)


        	(cobra.flux_analysis.sampling.OptGPSampler attribute)


      


      	nproj (in module cobra.flux_analysis.sampling)


  

  	
      	nproj_center (in module cobra.flux_analysis.sampling)


      	ns() (in module cobra.io.sbml3)


      	nullspace (cobra.flux_analysis.sampling.Problem attribute), [1]


      	nullspace() (in module cobra.util.array)


  





O


  	
      	Object (class in cobra.core.object)


      	objective (cobra.core.model.Model attribute)


      	objective_coefficient (cobra.core.reaction.Reaction attribute)


      	objective_direction (cobra.core.model.Model attribute)


  

  	
      	objective_value (cobra.core.solution.Solution attribute)


      	OptGPSampler (class in cobra.flux_analysis.sampling)


      	OptimizationError


      	optimize() (cobra.core.model.Model method)


      	optimize_minimal_flux() (in module cobra.flux_analysis.parsimonious)


  





P


  	
      	parse_composition() (cobra.core.formula.Formula method)


      	parse_gpr() (in module cobra.core.gene)


      	parse_legacy_id() (in module cobra.io.sbml)


      	parse_legacy_sbml_notes() (in module cobra.io.sbml)


      	parse_stream() (in module cobra.io.sbml3)


      	parse_xml_into_model() (in module cobra.io.sbml3)


      	pfba() (in module cobra.flux_analysis.parsimonious)


      	pop() (cobra.core.dictlist.DictList method)


      	prev (cobra.flux_analysis.sampling.ACHRSampler attribute)

      
        	(cobra.flux_analysis.sampling.OptGPSampler attribute)


      


  

  	
      	Problem (class in cobra.flux_analysis.sampling)


      	problem (cobra.core.model.Model attribute)

      
        	(cobra.flux_analysis.sampling.ACHRSampler attribute)


        	(cobra.flux_analysis.sampling.HRSampler attribute)


        	(cobra.flux_analysis.sampling.OptGPSampler attribute)


      


      	production_envelope() (in module cobra.flux_analysis.phenotype_phase_plane)


      	products (cobra.core.reaction.Reaction attribute)


      	prune_unused_metabolites() (in module cobra.manipulation.delete)


      	prune_unused_reactions() (in module cobra.manipulation.delete)


  





Q


  	
      	query() (cobra.core.dictlist.DictList method)


  





R


  	
      	reactants (cobra.core.reaction.Reaction attribute)


      	Reaction (class in cobra.core.reaction)


      	reaction (cobra.core.reaction.Reaction attribute)


      	reaction_elements() (in module cobra.flux_analysis.phenotype_phase_plane)


      	reaction_from_dict() (in module cobra.io.dict)


      	reaction_to_dict() (in module cobra.io.dict)


      	reaction_weight() (in module cobra.flux_analysis.phenotype_phase_plane)


      	reactions (cobra.core.model.Model attribute)

      
        	(cobra.core.species.Species attribute)


      


      	read_legacy_sbml() (in module cobra.io.sbml)


      	read_sbml_model() (in module cobra.io.sbml3)


      	reduced_cost (cobra.core.reaction.Reaction attribute)


      	reduced_costs (cobra.core.solution.Solution attribute)


      	remove() (cobra.core.dictlist.DictList method)


      	remove_cons_vars() (cobra.core.model.Model method)


      	remove_cons_vars_from_problem() (in module cobra.util.solver)


      	remove_from_model() (cobra.core.gene.Gene method)

      
        	(cobra.core.metabolite.Metabolite method)


        	(cobra.core.reaction.Reaction method)


      


  

  	
      	remove_genes() (in module cobra.manipulation.delete)


      	remove_metabolites() (cobra.core.model.Model method)


      	remove_reactions() (cobra.core.model.Model method)


      	rename_genes() (in module cobra.manipulation.modify)


      	repair() (cobra.core.model.Model method)


      	reset() (cobra.util.context.HistoryManager method)


      	resettable() (in module cobra.util.context)


      	rev_idx (cobra.flux_analysis.sampling.ACHRSampler attribute)

      
        	(cobra.flux_analysis.sampling.HRSampler attribute)


        	(cobra.flux_analysis.sampling.OptGPSampler attribute)


      


      	reverse() (cobra.core.dictlist.DictList method)


      	reverse_id (cobra.core.reaction.Reaction attribute)


      	reverse_variable (cobra.core.reaction.Reaction attribute)


      	reversibility (cobra.core.reaction.Reaction attribute)


      	revert_to_reversible() (in module cobra.manipulation.modify)


  





S


  	
      	sample() (cobra.flux_analysis.sampling.ACHRSampler method)

      
        	(cobra.flux_analysis.sampling.HRSampler method)


        	(cobra.flux_analysis.sampling.OptGPSampler method)


        	(in module cobra.flux_analysis.sampling)


      


      	save_json_model() (in module cobra.io.json)


      	save_matlab_model() (in module cobra.io.mat)


      	save_yaml_model() (in module cobra.io.yaml)


      	seed (cobra.flux_analysis.sampling.ACHRSampler attribute)

      
        	(cobra.flux_analysis.sampling.HRSampler attribute)


        	(cobra.flux_analysis.sampling.OptGPSampler attribute)


      


      	separate_forward_and_reverse_bounds() (in module cobra.core.reaction)


      	set_attrib() (in module cobra.io.sbml3)


      	set_objective() (in module cobra.util.solver)


      	shadow_price (cobra.core.metabolite.Metabolite attribute)


      	shadow_prices (cobra.core.solution.Solution attribute)


      	shared_np_array() (in module cobra.flux_analysis.sampling)


  

  	
      	show_versions() (in module cobra.util.version_info)


      	single_gene_deletion() (in module cobra.flux_analysis.deletion)


      	single_reaction_deletion() (in module cobra.flux_analysis.deletion)


      	slim_optimize() (cobra.core.model.Model method)


      	Solution (class in cobra.core.solution)


      	solution (cobra.core.model.Model attribute)


      	solver (cobra.core.model.Model attribute)

      
        	(cobra.core.solution.LegacySolution attribute)


      


      	SolverNotFound


      	sort() (cobra.core.dictlist.DictList method)


      	Species (class in cobra.core.species)


      	status (cobra.core.solution.Solution attribute)


      	strnum() (in module cobra.io.sbml3)


      	subtract_metabolites() (cobra.core.reaction.Reaction method)


      	summary() (cobra.core.metabolite.Metabolite method)

      
        	(cobra.core.model.Model method)


      


  





T


  	
      	test_all() (in module cobra.test)


      	thinning (cobra.flux_analysis.sampling.ACHRSampler attribute)

      
        	(cobra.flux_analysis.sampling.HRSampler attribute)


        	(cobra.flux_analysis.sampling.OptGPSampler attribute)


      


  

  	
      	to_frame() (cobra.core.solution.Solution method)


      	to_json() (in module cobra.io.json)


      	to_yaml() (in module cobra.io.yaml)


      	total_components_flux() (in module cobra.flux_analysis.phenotype_phase_plane)


      	total_yield() (in module cobra.flux_analysis.phenotype_phase_plane)


  





U


  	
      	Unbounded


      	UndefinedSolution


      	undelete_model_genes() (in module cobra.manipulation.delete)


  

  	
      	union() (cobra.core.dictlist.DictList method)


      	update_costs() (cobra.flux_analysis.gapfilling.GapFiller method)


      	update_forward_and_reverse_bounds() (in module cobra.core.reaction)


      	upper_bound (cobra.core.reaction.Reaction attribute)


  





V


  	
      	validate() (cobra.flux_analysis.gapfilling.GapFiller method)

      
        	(cobra.flux_analysis.sampling.HRSampler method)


      


      	validate_sbml_model() (in module cobra.io.sbml3)


      	variable_bounds (cobra.flux_analysis.sampling.Problem attribute), [1]


  

  	
      	variable_fixed (cobra.flux_analysis.samp