cobra Documentation
Release 0.18.1

The cobrapy core team

May 26, 2022

10

11

Global Configuration

1.1 The configuration object
1.2 Reactionbounds
13 Solver.
Building a Model

Reading and Writing Models

3.1 SBML
32 JSON . . .
33 YAML
34 MATLAB.
35 Pickle.
Simulating with FBA

41 RunningFBA
4.2 Changing the Objectives
43 RunmningFVA o oo
44 RunningpFBA oL
4.5 Running geometric FBA L.

Simulating Deletions
5.1 Knocking out single genes and reactions

5.2 Single Deletions
53 DoubleDeletions

Production envelopes

Flux sampling

7.1 Basicusageo
7.2 Advancedusage
7.3 Addingconstraints
Loopless FBA

8.1 Looplesssolution.
82 Looplessmodel,
83 Method
Consistency testing

9.1 UsingFVA
9.2 UsingFASTCC
Gapfillling

Growth media

11.1 Minimalmedia

CONTENTS

19

................... 19
................... 19
................... 20

21

25

................... 25
................... 26
................... 26
................... 26
................... 27

29

................... 29
................... 31
................... 31
................... 33
................... 33

35

................... 35
................... 36
................... 37

39

41

................... 41
................... 42
................... 44

45

................... 45
................... 46
................... 48

51

................... 52
................... 52

53

55

11.2 Boundary reactions v v v i i e 57

12 Solvers 59
12.1 Internal solverinterfaces o i i i e e e e e e e e e e e 59
13 Tailored constraints, variables and objectives 61
13,1 Constraints e 61
13.2 ODbJECtiVES . . . v v vt e e e e 62
13.3 Variables e e e e e 64
14 Dynamic Flux Balance Analysis (AFBA) in COBRApy 65
14.1 Setupthe dynamic system e e e 65
14.2 Run the dynamic FBA simulation 66
15 Using the COBRA toolbox with cobrapy 69
16 FAQ 71
16.1 How do Linstall cobrapy? e e 71
16.2 HowdoIcitecobrapy? o e e 71
16.3 How do I rename reactions or metabolites? 71
164 Howdoldeleteagene? @ i i it e e 72
16.5 How do I change the reversibility of a Reaction? 72
16.6 How do I generate an LP file froma COBRA model? 72
17 API Reference 75
17.1 cobra . . . o v e e e e e e e e e e 75
172 £esSt_Toom . . v v v v i e e e e e e e e e e e 262
17.3 test_geometricC i i i i it e e e e e e e e e e e 263
174 test_parsimoniouUs o . v v i v ittt e e e e e e e e e 263
17.5 test_reaction v i i i i i i e e e e e e e e e 264
17.6 test_gapfilling o v i i i i i e e e e e e e e e e e 264
177 test_variability e e e e e e e e e e e e e e e 264
17.8 test _£astCC . . v v v i i e e e 266
17.9 £eSt_MOMa . v v v v v o o e e e e e e e e e e e 266
17.10 conftest . . . v i i e e e e e e e 267
1711 test_1o0PlesSsS o v v v v i i i e e e e e e e e e e e e e e e e 267
17.12 test_deletion o v i i i i i e e e e e e e e e 268
17.13 test_phenotype_phase_plane i i i it i ittt et e 270
17.14 update_pickles i i i e e e e e e e e e e e 270
17.15 test_Utdl . v v v o o e e e e e e e e 271
17.16 LesSt_array . . v v v i v e e e e e e e e e e e e e e 271
1707 £eSt_SOLVET . v v i i i e e e e e e e e e e e e e e e e e e e 272
1718 LeST_0PLaD -« v v e e e e e e e e e e e e e e e e e e e 273
17.19 test_achr . . . o o o e e e e e 273
17.20 test_sampling . . . v v v i i e e e e e e e e e e e e e e e e e 274
18 Indices and tables 277
Python Module Index 279
Index 281

cobra Documentation, Release 0.18.1

For installation instructions, please see INSTALL.rst.
Many of the examples below are viewable as I[Python notebooks, which can be viewed at nbviewer.

{

“cells”: [
99, LR I3

{ “cell_type”: “markdown”, “metadata”: {}, “source”: [

“# Getting Started”

3o
9, < ELIT3

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“## Loading a model and inspecting it”

b

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“To begin with, cobrapy comes with bundled models for _Salmonella_ and _E. coli_,
as well as a “textbook” model of _E. coli_ core metabolism. To load a test model,

type”

3 A

“cell_type”: “code”, “execution_count”: 1, “metadata”: {}, “outputs”: [], “source”: [

€69

“from __future__ import print_functionn”, “n”, “import cobran”, “import co-

9«

bra.testn”, “n”, “# “ecoli” and “salmonella” are also valid argumentsn”, “model =
cobra.test.create_test_model(“textbook’)”

3o
99, EEINT3

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“The reactions, metabolites, and genes attributes of the cobrapy model are a special
type of list called a cobra.DictList, and each one is made up of cobra.Reaction,
cobra.Metabolite and cobra.Gene objects respectively.”

3o

“cell_type”: “code”, “execution_count”: 2, “metadata”: {
“scrolled”: true
}, “outputs™: [
“name”: “stdout”, “output_type”: “stream”, “text”: [

“9511”, “7211”, “« l 37n”

}
1, “source”: [

“print(len(model.reactions))n”, “print(len(model.metabolites))n”,
“print(len(model.genes))”

CONTENTS 1

https://github.com/opencobra/cobrapy/blob/master/INSTALL.rst
http://nbviewer.ipython.org/github/opencobra/cobrapy/tree/master/documentation_builder/

cobra Documentation, Release 0.18.1

3o
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“When using [Jupyter notebook](https://jupyter-notebook-beginner-guide.
readthedocs.io/en/latest/) this type of information is rendered as a table.”
1
1A

9, LLINY3

“cell_type”: “code”, “execution_count”: 3, “metadata”: {}, “outputs”: [

{
“data”: {

“text/html”: [“n”, ” <table>n”, ” <tr>n”,
<td>Name</td>n”, 7

[TET]

</tr><tr>n”, 7 <td>Memory address</td>n”,

<<<<<<< HEAD ” <td>0x01158878d0</td>n",

Lt} i)

</tr><tr>n”,

EEENEL)

<td>72</td>n”, 7 </tr><tr>n”, > <td>Number of reactions</td>n

<td>e_coli_core</td>n",

<td>Number of metabolites</td>n”,

EL)

Lt}

EEINEE)

<td>95</td>n”, ” </tr><tr>n”, 7 <td>Objective expression</td>n",

29

ERINET) 9% 9

<td>1.0*Biomass_Ecoli_core - 1.0*Biomass_Ecoli_core_reverse_2cdba</td>n”,

’9

</tr><tr>n”, 7 <td>Compartments</td>n", ” <td>cytosol, extracellu-

93 99 ERINET)

lar</td>n”, ” </tr>n”, ” </table>"
], “text/plain™: [
<<<<<<< HEAD “<Model e_coli_core at 0x1158878d0>"
]

}, “execution_count”: 3, “metadata”: {}, “output_type”: “exe-
cute_result”

}
], “source”: [
“model”
1
1A
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“Just like a regular list, objects in the DictList can be retrieved by index. For
example, to get the 30th reaction in the model (at index 29 because of [0-
indexing](https://en.wikipedia.org/wiki/Zero-based_numbering)):”
]
1o

99, < LLINNT3

“cell_type”: “code”, “execution_count”: 4, “metadata”: {}, “outputs”: [

{
“data”: {

9 9

“text/html”: [“n”, ” <table>n”, ” <tr>n”,
identifier</td><td>EX_glu_ L _e</td>n",
</tr><tr>n”, ” <td>Name</td><td>L-
Glutamate exchange</td>n”, ” </tr><tr>n”,
<td>Memory address</td>n",

<td>Reaction

’

i)

<<<<<<< HEAD ” <td>0x011615e2e8</td>n",

CONTENTS

https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Zero-based_numbering

cobra Documentation, Release 0.18.1

29 29 ’9 29

</tr><tr>n”, <td>Stoichiometry</td>n", <td>n”, <p

style="text-align:right’>glu__L._e —> </p>n”, ” <p style="text-align:right’>L-Glutamate

EEENEL) EEENEE) EEENEE) ERENEE)

— </p>n”, " <td>n”, 7 </tr><tr>n”, 7 <td>GPR</td><td></td>n",

ERINEE) ERINET)

</tr><tr>n”, ” <td>Lower bound</td><td>0.0</td>n”, ” </tr><tr>n”,

EERNEE) 99 99

” <td>Upper bound</td><td>1000.0</td>n", ” </tr>n", ” </table>n”,

9 <

], “text/plain™: [
<<<<<<< HEAD “<Reaction EX_glu_ I _e at Ox11615e2e8>"
]

}, “execution_count”: 4, “metadata”: {}, “output_type”: “exe-
cute_result”

}
], “source”: [

“model.reactions[29]”

1
3o
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“Additionally, items can be retrieved by their id using the DictList.get_by_id()
function. For example, to get the cytosolic atp metabolite object (the id is
“atp_c”’), we can do the following:”
1
1A
“cell_type”: “code”, “execution_count”: 5, “metadata”: {}, “outputs™: [
{
“data”: {
“text/html”: [“n”, ” <table>n”, ”
<tr>n”, ” <td>Metabolite identi-

EL) 2

fier</td><td>atp_c</td>n", </tr><tr>n”,
<td>Name</td><td>ATP</td>n",

9% 99

</tr><tr>n”, 7 <td>Memory address</td>n",

<<<<<<< HEAD ” <td>0x01160d4630</td>n",

’

99 99

” </tr><tr>n”, 7 <td>Formula</td><td>C10H12N5013P3</td>n", ” </tr><tr>n”,

95 99 EEENET)

” <td>Compartment</td><td>c</td>n”, ” </tr><tr>n”, ” <td>In 13 reac-
tion(s)</td><td>n",

<<<<<<< HEAD ” PPS, ADKI1, ATPS4r, GLNS, SUCOAS, GLNabc, PGK, ATPM, PPCK, ACKr, PFK,
Biomass_Ecoli_core, PYK</td>n”,

” </tr>n”, ” </table>"
], “text/plain”: [
<<<<<<< HEAD “<Metabolite atp_c at 0x1160d4630>"
]
}, “execution_count”: 5, “metadata”:
cute_result”

{}, “output_type”: “exe-

}

], “source”: [

CONTENTS 3

cobra Documentation, Release 0.18.1

“model.metabolites.get_by_id(“atp_c”)”

]
3o
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“As an added bonus, users with an interactive shell such as IPython will be
able to tab-complete to list elements inside a list. While this is not recom-
mended behavior for most code because of the possibility for characters like
“-” inside ids, this is very useful while in an interactive prompt:”
1
1A
“cell_type”: “code”, “execution_count”: 6, “metadata”: {}, “outputs™: [
{
“data’: {
“text/plain”: [“(-10.0, 1000.0)”
]
}, “execution_count”™: 6, “metadata”: {}, “output_type”: “exe-
cute_result”
}
], “source”: [
“model.reactions.EX_glc__D_e.bounds”
]
A
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“## Reactions”
]
3 A
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“We will consider the reaction glucose 6-phosphate isomerase, which inter-
converts glucose 6-phosphate and fructose 6-phosphate. The reaction id for
this reaction in our test model is PGI.”
1
1A
“cell_type”: “code”, “execution_count”: 7, “metadata”: {}, “outputs™: [
{
“data”: {
“text/html”: [“n”, ” <table>n”, ” <tr>n”, ” <td>Reaction
identifier</td><td>PGI</td>n”, ” </tr><tr>n”, 7

<td>Name</td><td>glucose-6-phosphate
isomerase</td>n”, 7 </tr><tr>n”, <td>Memory
address</td>n",

<<<<<<< HEAD ” <td>0x0116188e48</td>n”,

i)

CONTENTS

cobra Documentation, Release 0.18.1

29 29 29

</tr><tr>n”, <p
style="text-align:right’>gbp_c <=> fbp_c</p>n”, <p style="text-align:right’>D-
Glucose 6-phosphate <=> D-Fructose 6-phosphate</p>n”, ” </td>n”, ”
</tr><tr>n”, 7 <td>GPR</td><td>b4025</td>n”, ” </tr><tr>n”,
” <td>Lower bound</td><td>-1000.0</td>n”, ~ </tr><tr>n”, ”

ELENET) ELINEY) LLIRET)

<td>Upper bound</td><td>1000.0</td>n", > </tr>n”, > </table>n”,

113

<td>Stoichiometry</td>n”, ” <td>n”,

29

], “text/plain™: [
<<<<<<< HEAD “<Reaction PGI at 0x116188e48>"
]

}, “execution_count”: 7, “metadata”: {}, “output_type”: “exe-
cute_result”

}
1, “source”: [
“pgi = model.reactions.get_by_id(“PGI”)n”, “pgi”
]
3o
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“We can view the full name and reaction catalyzed as strings”
]
1A
“cell_type”: “code”, “execution_count”: 8, “metadata”: {}, “outputs”: [
“name”: “stdout”, “output_type”: “stream”, “text”: [
“glucose-6-phosphate isomerasen”, “gbp_c <=> f6p_cn”
1
}
], “source”: [
“print(pgi.name)n”, “print(pgi.reaction)”
1
3o
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“We can also view reaction upper and lower bounds. Because the
pgi.lower_bound < 0, and pgi.upper_bound > 0, pgi is reversible.”
]
3o

99, 9

“cell_type”: “code”, “execution_count”: 9, “metadata”: {}, “outputs”: [
“name”: “stdout”, “output_type”: “stream”, “text”: [

“-1000.0 < pgi < 1000.0n”, “Truen”

}

], “source”: [

CONTENTS 5

cobra Documentation, Release 0.18.1

99

“print(pgi.lower_bound, “< pgi <, pgi.upper_bound)n”,
“print(pgi.reversibility)”

I

99, G ELINY3

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“The lower and upper bound of reactions can also be modified, and the re-
versibility attribute will automatically be updated. The preferred method for
manipulating bounds is using reaction.bounds, e.g.”

A

CLINT3

“cell_type”: “code”, “execution_count”: 10, “metadata”: {}, “outputs™: [
“name”: “stdout”, “output_type”: “stream”, “text”: [

“0 < pgi < 1000.0n”, “Reversibility after modification: Falsen”,
“Reversibility after resetting: Truen”

}

1, “source”: [

“old_bounds = pgiboundsn”, “pgi.bounds = (0, 1000.0)n”,
“print(pgi.lower_bound, “< pgi <”, pgi.upper_bound)n”, “print(‘“Reversibility
after modification:”, pgi.reversibility)n”, “pgi.bounds = old_boundsn”,

“print(‘“Reversibility after resetting:”, pgi.reversibility)”

b

99, < ELINT3

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“Bounds can also be modified one-at-a-time using reaction.lower_bound or
reaction.upper_bound. This approach is less desirable than setting both
bounds simultaneously with reaction.bounds because a user might accidently
set a lower bound higher than an upper bound (or vice versa). Currently, co-
brapy will automatically adjust the other bound (e.g. the bound the user didn’t
manually adjust) so that this violation doesn’t occur, but this feature may be
removed in the near future. *

}’{

99, 9

“cell_type”: “code”, “execution_count”: 11, “metadata”: {}, “outputs”: [
“name”: “stdout”, “output_type”: “stream”, “text”: [

“Upper bound prior to setting new lower bound: 1000.0n”, “Up-
per bound after setting new lower bound: 1100n”

}

], “source”: [

9

“old_bounds = pgi.boundsn”, “print(‘Upper bound prior to setting new lower
bound:’, pgi.upper_bound)n”, “pgi.lower_bound = 1100n”, “print(‘Upper

bound after setting new lower bound:’, pgi.upper_bound)n”, “pgi.bounds =
old_bounds”

CONTENTS

cobra Documentation, Release 0.18.1

A
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“We can also ensure the reaction is mass balanced. This function will return
elements which violate mass balance. If it comes back empty, then the reac-
tion is mass balanced.”
1
A
“cell_type”: “code”, “execution_count”: 12, “metadata”: {}, “outputs”: [
{
“data”: {
“text/plain”: [“{}”
]
}, “execution_count”: 12, “metadata”: {}, “output_type”: “exe-
cute_result”
}
], “source”: [
“pgi.check_mass_balance()”
]
3o
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“In order to add a metabolite, we pass in a dict with the metabolite object and
its coefficient”
]
1A
“cell_type”: “code”, “execution_count”: 13, “metadata”: {}, “outputs™: [
{
“data”: {
“text/plain”: [“‘g6bp_c + h_c <=>f6p_c’”
]
}, “execution_count”: 13, “metadata”: {}, “output_type”: “exe-
cute_result”
}
], “source”: [
“pgi.add_metabolites({model.metabolites.get_by_id(“h_c”): -1})n”,
“pgi.reaction”
]
1A
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“The reaction is no longer mass balanced”
]
1A

CONTENTS 7

cobra Documentation, Release 0.18.1

99, 9 <

“cell_type”: “code”, “execution_count”: 14, “metadata’: {}, “outputs”: [

{
“data”: {
“text/plain”: [“{‘charge’: -1.0, ‘H’: -1.0}”
]
}, “execution_count”: 14, “metadata”: {}, “output_type”: “exe-
cute_result”
}

1, “source”: [

“pgi.check_mass_balance()”

]
3 A
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“We can remove the metabolite, and the reaction will be balanced once again.”
]
1A
“cell_type”: “code”, “execution_count”: 15, “metadata”: {}, “outputs™: [
“name”: “stdout”, “output_type”: “stream”, “text”: [
“gbp_c <=> f6p_cn”, “{}n”
1
}
], “source”: [
“pgi.subtract_metabolites({ model.metabolites.get_by_id(“h_c”): -1})n”,
“print(pgi.reaction)n”, “print(pgi.check_mass_balance())”
1
3o
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“It is also possible to build the reaction from a string. However, care must be
taken when doing this to ensure reaction id’s match those in the model. The
direction of the arrow is also used to update the upper and lower bounds.”
1
1A

99, < CLINT3

“cell_type”: “code”, “execution_count”: 16, “metadata”: {}, “outputs™: [
“name”: “stdout”, “output_type”: “stream”, “text”: [

“unknown metabolite ‘green_eggs’ createdn”, ‘“‘unknown
metabolite ‘ham’ createdn”

}

], “source”: [

9999

“pgi.reaction = “gbp_c —> fobp_c + h_c + green_eggs + ham

CONTENTS

cobra Documentation, Release 0.18.1

A
“cell_type”: “code”, “execution_count”: 17, “metadata”: {}, “outputs™: [
{
“data”: {
“text/plain”: [“‘gbp_c —> f6p_c + green_eggs + h_c + ham’”
]
}, “execution_count”™: 17, “metadata™: {}, “output_type”: ‘“‘exe-
cute_result”
}
], “source”: [
“pgi.reaction”
1
1A
“cell_type”: “code”, “execution_count”: 18, “metadata”: {}, “outputs™: [
{
“data’: {
“text/plain”: [“‘gbp_c <=> f6p_c’”
]
}, “execution_count”: 18, “metadata”: {}, “output_type”: “exe-
cute_result”
}
], “source”: [
“pgi.reaction = “gbp_c <=> fép_c’n”, “pgi.reaction”
]
1A
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“## Metabolites”
]
1A
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“We will consider cytosolic atp as our metabolite, which has the id “atp_c”
in our test model.”
]
3o
“cell_type”: “code”, “execution_count”: 19, “metadata”: {}, “outputs™: [
{
“data”: {
“text/html”: [“n”, ” <table>n”, ”
<tr>n”, ” <td>Metabolite identi-

2 tE)

fier</td><td>atp_c</td>n", </tr><tr>n”,

CONTENTS 9

cobra Documentation, Release 0.18.1

<td>Name</td><td>ATP</td>n”,

ERIRET)

</tr><tr>n”, ” <td>Memory address</td>n",
<<<<<<< HEAD ” <td>0x01160d4630</td>n",

” </tr><tr>n”, ” <td>Formula</td><td>C10H12N5013P3</td>n”, ” </tr><tr>n",

ELENET)

” <td>Compartment</td><td>c</td>n”, ” </tr><tr>n”, ” <td>In 13 reac-
tion(s)</td><td>n",

<<<<<<< HEAD ” PPS, ADKI1, ATPS4r, GLNS, SUCOAS, GLNabc, PGK, ATPM, PPCK, ACKr, PFK,
Biomass_Ecoli_core, PYK</td>n”,

[LEET)

” </tr>n”, 7 </table>”

], “text/plain™: [
<<<<<<< HEAD “<Metabolite atp_c at 0x1160d4630>"
]

}, “execution_count”: 19, “metadata”: {}, “output_type”: “exe-
cute_result”

}

], “source”: [

29

“atp = model.metabolites.get_by_id(“atp_c”)n”, “atp

1
3 A
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“We can print out the metabolite name and compartment (cytosol in this case)
directly as string.”
]
A

99, 9

“cell_type”: “code”, “execution_count”: 20, “metadata”: {}, “outputs™: [
“name”: “stdout”, “output_type”: “stream”, “text”: [

“ATPH”, “cn”

}

], “source”: [

EEIT3

“print(atp.name)n”, “print(atp.compartment)”

99, < ELINT3

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“We can see that ATP is a charged molecule in our model.”

3o

“cell_type”: “code”, “execution_count”: 21, “metadata”: {}, “outputs”: [
{
“data”: {
“text/plain”: [“-4”

10 CONTENTS

cobra Documentation, Release 0.18.1

]

}, “execution_count”: 21, “metadata”: {}, “output_type”: “exe-
cute_result”

1
], “source”: [

“atp.charge”

]
3o
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“We can see the chemical formula for the metabolite as well.”
]
3 A
“cell_type”: “code”, “execution_count”: 22, “metadata”: {}, “outputs™: [
“name”: “stdout”, “output_type”: “stream”, “text”: [
“C10H12N5013P3n”
1
}
], “source”: [
“print(atp.formula)”
]
A
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“The reactions attribute gives a frozenset of all reactions using the given
metabolite. We can use this to count the number of reactions which use atp.”
1
3o
“cell_type”: “code”, “execution_count”: 23, “metadata”: {}, “outputs”: [
{
“data”: {
“text/plain”: [“13”
]
}, “execution_count”: 23, “metadata”: {}, “output_type”: ‘“exe-
cute_result”
}
], “source”: [
“len(atp.reactions)”
1
1A

29, < ELINT3

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“A metabolite like glucose 6-phosphate will participate in fewer reactions.”

CONTENTS 11

cobra Documentation, Release 0.18.1

b

CLINT3

“cell_type”: “code”, “execution_count”: 24, “metadata”: {}, “outputs”: [
{
“data”: { “text/plain”: [

<<<<<<< HEAD “frozenset({<Reaction Biomass_Ecoli_core at 0x1161337b8>,n”, ” <Reaction G6PDH2r at
0x1160a3a20>,n", ” <Reaction GLCpts at 0x1160a3da0>,n”, ” <Reaction PGI at 0x116188e48>})”

” <Reaction GLCpts at 0x117a9d0f0>,n”, ” <Reaction PGI at Ox117afacc0>})”
>>>>>>> origin/devel

]

}, “execution_count”™: 24, “metadata”: {}, “output_type”: ‘“exe-
cute_result”

}
], “source”: [

“model.metabolites.get_by_id(“gbp_c”).reactions”

1
1A
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“## Genes”
1
1A
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“The gene_reaction_rule is a boolean representation of the gene requirements for
this reaction to be active as described in [Schellenberger et al 2011 Nature Protocols
6(9):1290-307](http://dx.doi.org/doi: 10.1038/nprot.2011.308).n”, “n”, “The GPR is
stored as the gene_reaction_rule for a Reaction object as a string.”
1
1A
“cell_type”: “code”, “execution_count”: 25, “metadata”: {}, “outputs”: [
{
“data”: {
“text/plain”: [“‘b4025°”
]
}, “execution_count™: 25, “metadata”: {}, “output_type”: “execute_result”
}
], “source”: [
“gpr = pgi.gene_reaction_rulen”, “gpr”
1
1A

99, < ELINT3

“cell_type”: “markdown”, “metadata”: {}, “source”: [

12 CONTENTS

http://dx.doi.org/doi:10.1038/nprot.2011.308).n

cobra Documentation, Release 0.18.1

“Corresponding gene objects also exist. These objects are tracked by the reactions
itself, as well as by the model”

}7 {
99, 9

“cell_type”: “code”, “execution_count”: 26, “metadata’: {}, “outputs”: [
{
“data”: { “text/plain”: [
<<<<<<< HEAD “frozenset({<Gene b4025 at 0x11610a2b0>})”
]

}, “execution_count”: 26, “metadata”: {}, “output_type’: “exe-
cute_result”

1
], “source”: [
“pgi.genes”
]
1A
“cell_type”: “code”, “execution_count”: 27, “metadata”: {}, “outputs”: [
{
“data”: {
“text/html”: [“n”, ” <table>n”, ” <tr>n”, ” <td>Gene
identifier</td><td>b4025</td>n”, 7 </tr><tr>n”,

LR} 2

<td>Name</td><td>pgi</td>n",

95 9

</tr><tr>n”, ” <td>Memory address</td>n",
<<<<<<< HEAD ” <td>0x011610a2b0</td>n”,

ELIEE)

” <ftr><tr>n”, ” <td>Functional</td><td>True</td>n”, ” </tr><tr>n”,
” <td>In 1 reaction(s)</td><td>n", ” PGl</td>n", ” </tr>n”, ” </ta-
ble>”

], “text/plain”: [
<<<<<<< HEAD “<Gene b4025 at 0x11610a2b0>"
1

}, “execution_count”: 27, “metadata”: {}, “output_type”: “exe-
cute_result”

}

], “source”: [

ELINT3

“pgi_gene = model.genes.get_by_id(“b4025)n”, “pgi_gene”

b

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“Each gene keeps track of the reactions it catalyzes”

1o

“cell_type”: “code”, “execution_count”: 28, “metadata”: {}, “outputs”: [

CONTENTS

13

cobra Documentation, Release 0.18.1

“data”: { “text/plain”: [
<<<<<<< HEAD “frozenset({<Reaction PGI at 0x116188e48>})”
]

}, “execution_count”: 28, “metadata”: {}, “output_type”’: “exe-
cute_result”

}
], “source”: [

“pgi_gene.reactions”

}? {
“cell_type”: “markdown”, “metadata”: {}, “source”: [

“Altering the gene_reaction_rule will create new gene objects if necessary and
update all relationships.”

1A
99, <« 9%

“cell_type”: “code”, “execution_count”: 29, “metadata”: {}, “outputs™: [

{

“data”: { “text/plain”: [

<<<<<<< HEAD “frozenset({<Gene eggs at 0x1160245c0>, <Gene spam at 0x116024080>})”

]

}, “execution_count”: 29, “metadata”: {}, “output_type”: “exe-
cute_result”

}

], “source”: [

9999 ¢

“pgi.gene_reaction_rule = “(spam or eggs)”’n”, “pgi.genes”

1
1A
“cell_type”: “code”, “execution_count”: 30, “metadata”: {}, “outputs™: [
{
“data”: {
“text/plain”: [“frozenset()”
]
}, “execution_count”: 30, “metadata”: {}, “output_type”: “exe-
cute_result”
}

], “source”: [

“pgi_gene.reactions”

}7{

14

CONTENTS

cobra Documentation, Release 0.18.1

CEINT

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“Newly created genes are also added to the model”

]
3o
“cell_type”: “code”, “execution_count”: 31, “metadata”: {}, “outputs”: [
{
“data”: {
“text/html”: [“n”, ” <table>n”, ” <tr>n”, ” <td>Gene
identifier</td><td>spam</td>n”, 7 </tr><tr>n”, ”

<td>Name</td><td></td>n”, ” </tr><tr>n”, ”
<td>Memory address</td>n”,

<<<<<<< HEAD ” <td>0x0116024080</td>n",

ELIET)

? </tr><tr>n”, ” <td>Functional</td><td>True</td>n”, ” </tr><tr>n”,
” <td>In 1 reaction(s)</td><td>n", ” PGI</td>n”, ” </tr>n”, ” </ta-
ble>"

], “text/plain”: [
<<<<<<< HEAD “<Gene spam at 0x116024080>"
]

}, “execution_count”: 31, “metadata”: {}, “output_type”:
“execute_result”

}
1, “source”: [

“model.genes.get_by_id(“spam”)”

1
1A
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“The delete_model_genes function will evaluate the GPR and set
the upper and lower bounds to O if the reaction is knocked out. This
function can preserve existing deletions or reset them using the cu-
mulative_deletions flag.”
]
3o

99, < CLINT3

“cell_type”: “code”, “execution_count”: 32, “metadata”: {}, “outputs”: [
“name”: “stdout”, “output_type”: “stream”, “text”: [

“after 1 KO: -1000 < flux_PGI < 1000n”, “after 2 KO: 0 <
flux_PGI < On”

}

1, “source”: [

I

“cobra.manipulation.delete_model_genes(n”, model, [“spam’],
cumulative_deletions=True)n”, “print(“after 1 KO: %4d < flux_PGI

CONTENTS 15

cobra Documentation, Release 0.18.1

69 3

< %4d” % (pgilower_bound, pgi.upper_bound))n”, “n”, “co-
bra.manipulation.delete_model_genes(n”, ” model, [“eggs”], cumu-
lative_deletions=True)n”, “print(“after 2 KO: %4d < flux_PGI <

%4d” % (pgi.lower_bound, pgi.upper_bound))”

b o

9, <

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“The undelete_model_genes can be used to reset a gene deletion”

I

99, LEINT3

“cell_type”: “code”, “execution_count”: 33, “metadata”: {}, “outputs”: [
“name”: “stdout”, “output_type”: “stream”, “text”: [

“.1000 < pgi < 1000n”

}
1, “source”: [

“cobra.manipulation.undelete_model_genes(model)n”,
“print(pgi.lower_bound, “< pgi <”, pgi.upper_bound)”

b o

99, ¢ 99 <

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“## Making changes reversibly using models as contexts”

b o

9, <

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“Quite often, one wants to make small changes to a model and eval-
uate the impacts of these. For example, we may want to knock-out
all reactions sequentially, and see what the impact of this is on the
objective function. One way of doing this would be to create a new
copy of the model before each knock-out with model.copy(). How-
ever, even with small models, this is a very slow approach as models
are quite complex objects. Better then would be to do the knock-out,
optimizing and then manually resetting the reaction bounds before
proceeding with the next reaction. Since this is such a common sce-
nario however, cobrapy allows us to use the model as a context, to
have changes reverted automatically.”

Ao

99, < CEINT3

“cell_type”: “code”, “execution_count”: 34, “metadata”: {}, “outputs”: [
“name”: “stdout”, “output_type”: “stream”, “text”: [

“ACALD blocked (bounds: (0, 0)), new growth rate
0.873922n”, “ACALDt blocked (bounds: (0, 0)), new
growth rate 0.873922n”, “ACKr blocked (bounds: (0, 0)),
new growth rate 0.873922n”, “ACONTa blocked (bounds:

16 CONTENTS

cobra Documentation, Release 0.18.1

(0, 0)), new growth rate -0.000000n”, “ACONTbD blocked
(bounds: (0, 0)), new growth rate -0.000000n”

}

1, “source”: [

“model = cobra.test.create_test_model(‘textbook’)n”, “for reac-

tion in model.reactions[:5]:n”, ” with model as model:n”, ” re-
action.knock_out()n”, ” model.optimize()n”, ” print(‘%s blocked
(bounds: %s), new growth rate %f’ %n”, ” (reaction.id,
str(reaction.bounds), model.objective.value))”
]
}? {
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“If we look at those knocked reactions, see that their bounds have all
been reverted.”
]
|
“cell_type”: “code”, “execution_count”: 35, “metadata”: {}, “outputs”: [
{
“data”: {
“text/plain”: [“[(-1000.0, 1000.0),n”, ” (-1000.0,
1000.0),n”, ” (-1000.0, 1000.0),n”, ” (-1000.0, 1000.0),n”,
” (-1000.0, 1000.0)]”
]
}, “execution_count™: 35, “metadata”: {}, “output_type”: “exe-
cute_result”
}

1, “source”: [

“[reaction.bounds for reaction in model.reactions[:5]]”

}? {
“cell_type”: “markdown”, “metadata”: {}, “source”: [

“Nested contexts are also supported”

}7 {
“cell_type”: “code”, “execution_count”: 36, “metadata’: {}, “outputs”: [
“name”: “stdout”, “output_type”: “stream”, “text”: [

“original objective: 1.0*Biomass_Ecoli_core -
1.0*Biomass_Ecoli_core_reverse_2cdban”, “print ob-
jective in first context: -1.0*ATPM_reverse_5b752
+ 1.0*ATPMn”, “print objective in second con-
text: 1.0*ACALD - 1.0*ACALD_reverse_fda2bn”,
“objective after exiting second context: -
1.0*ATPM_reverse_5b752 + 1.0*ATPMn”, “back

CONTENTS 17

cobra Documentation, Release 0.18.1

to original objective: 1.0*Biomass_Ecoli_core -
1.0*Biomass_Ecoli_core_reverse_2cdban”

}

1, “source”: [

3

“print(‘original objective: °, model.objective.expression)n”, “with
model:n”, ” model.objective = ‘ATPM’n”, ” print(‘print objective
in first context:’, model.objective.expression)n”, ” with model:n”,
” model.objective = ‘ACALD’n”, ” print(‘print objective in sec-
ond context:’, model.objective.expression)n”, ” print(‘objective af-
ter exiting second context:’,n”, ” model.objective.expression)n”,
“print(‘back to original objective:’, model.objective.expression)”

} o

99, ¢ 99 <

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“Most methods that modify the model are supported like this includ-
ing adding and removing reactions and metabolites and setting the
objective. Supported methods and functions mention this in the cor-
responding documentation.”

I

99, <

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“While it does not have any actual effect, for syntactic convenience it
is also possible to refer to the model by a different name than outside
the context. Such as”

o

9 <«

“cell_type”: “code”, “execution_count”: 37, “metadata”: {}, “outputs™: [],
“source”: [

[LEET

“with model as inner:n”, ” inner.reactions.PFK knock_out”

}

], “metadata”: {

“kernelspec”: { “display_name”: “Python 3”, “language”: “python”, ‘“name”:
“python3”

}, “language_info”: {

“codemirror_mode”: { “name”: “ipython”, “version”: 3

}, “file_extension™: “.py”, “mimetype”: “text/x-python”, “name”: “python”,

“nbconvert_exporter”: “python”, “pygments_lexer”: “ipython3”, “version’:
“3.6.5”

}

}, “nbformat”: 4, “nbformat_minor”: 1

18 CONTENTS

CHAPTER
ONE

GLOBAL CONFIGURATION

With cobra > 0.13.4, we introduce a global configuration object. For now, you can configure default reaction
bounds and optimization solver which will be respected by newly created reactions and models.

1.1 The configuration object

You can get a configuration object/ in the following way:

: import cobra

: cobra_config = cobra.Configuration/ ()

1The configuration object is a singleton. That means only one instance can exist and it is respected everywhere in
COBRApy.

1.2 Reaction bounds

The object has the following attributes which you can inspect but also change as desired.

: cobra_config.lower_bound

]: -1000.0

: cobra_config.upper_bound

]: 1000.0

: cobra_config.bounds

(-1000.0, 1000.0)

1.2.1 Changing bounds

If you modify the above values before creating a reaction they will be used.

: cobra_config.bounds = -10, 20

: cobra.Reaction ("R1")

]: <Reaction R1 at 0x7£0426135fd0>

Please note that by default reactions are irreversible. You can change this behavior by unsetting the lower bound
argument.

19

https://en.wikipedia.org/wiki/Singleton_pattern

[12]:

cobra Documentation, Release 0.18.1

cobra.Reaction ("R2", lower_bound=None)

<Reaction R2 at 0x7£04260d4438>

N.B.: Most models define reaction bounds explicitly which takes precedence over the configured values.

from cobra.test import create_test_model

: model = create_test_model ("textbook™)

: model.reactions.ACt2r

<Reaction ACt2r at 0x7£f042607c780>

1.3 Solver

You can define the default solver used by newly instantiated models. The default solver depends on your environ-
ment. In order we test for the availability of Gurobi, CPLEX, and GLPK. GLPK is assumed to always be present
in the environment.

model .solver

<optlang.cplex_interface.Model at 0x7£04260d4b00>

1.3.1 Changing solver
cobra_config.solver = "glpk_exact"
new_model = create_test_model ("textbook™)

new_model.solver

<optlang.glpk_exact_interface.Model at 0x7£f04260d47b8>

Changing global configuration values is mostly useful at the beginning of a work session.

20 Chapter 1. Global Configuration

CHAPTER
TWO

BUILDING A MODEL

This simple example demonstrates how to create a model, create a reaction, and then add the reaction to the model.
We’ll use the ‘30AS140’ reaction from the STM_1.0 model:
1.0 malACPJ[c] + 1.0 h[c] + 1.0 ddcaACP[c] — 1.0 co2[c] + 1.0 ACP[c] + 1.0 3omrsACP]c]

First, create the model and reaction.

from _ future import print_function

from cobra import Model, Reaction, Metabolite
Best practise: SBML compliant IDs
model = Model ('example_model"')

reaction = Reaction ('30AS140")

reaction.name = '3 oxoacyl acyl carrier protein synthase n C140 '
reaction.subsystem = 'Cell Envelope Biosynthesis'
reaction.lower_bound = 0. # This is the default

reaction.upper_bound = 1000. # This is the default

We need to create metabolites as well. If we were using an existing model, we could use Model.get_by_id
to get the appropriate Metabolite objects instead.

ACP_c = Metabolite (
'ACP_c',
formula="'C11H21N207PRS',
name='acyl-carrier—-protein',
compartment="c")
omrsACP_c = Metabolite (
'3omrsACP_c',
formula='"'C25H45N209PRS "',
name="'3-Oxotetradecanoyl-acyl-carrier-protein’,
compartment="c")
co2_c = Metabolite('co2_c', formula='CO2', name='CO2', compartment='c')
malACP_c = Metabolite (
'malACP_c',
formula="'Cl14H22N2010PRS",
name='Malonyl-acyl-carrier—-protein’',
compartment="c")
h_c = Metabolite('h_c', formula='H', name='H', compartment='c")
ddcaACP_c = Metabolite(
'ddcaACP_c',
formula="'C23H43N208PRS"',
name="'Dodecanoyl-ACP-n-C120ACP"',
compartment="c")

Adding metabolites to a reaction requires using a dictionary of the metabolites and their stoichiometric coefficients.
A group of metabolites can be added all at once, or they can be added one at a time.

21

cobra Documentation, Release 0.18.1

reaction.add_metabolites ({
malACP_c: -1.0,
h@s =1,0,
ddcaACP_c: —-1.0,
co2_c: 1.0,
ACP_c: 1.0
omrsACP_c: 1.0

’

})

reaction.reaction # This gives a string representation of the reaction

'ddcaACP_c + h_c + malACP_c —--> 3omrsACP_c + ACP_c + co2_c'

The gene_reaction_rule is a boolean representation of the gene requirements for this reaction to be active as
described in Schellenberger et al 2011 Nature Protocols 6(9):1290-307. We will assign the gene reaction rule
string, which will automatically create the corresponding gene objects.

reaction.gene_reaction_rule = '(STM2378 or STM1197)'
reaction.genes

frozenset ({<Gene STM1197 at 0x7f2d85786898>, <Gene STM2378 at 0x7f2dc45437f0>})

At this point in time, the model is still empty

print (' reactions initially' % len (model.reactions))
print (' metabolites initially' % len (model.metabolites))

[}

print (' genes initially' % len (model.genes))

0 reactions initially
0 metabolites initially
0 genes initially

We will add the reaction to the model, which will also add all associated metabolites and genes

: model.add_reactions ([reaction])

Now there are things in the model

print (' reaction' % len(model.reactions))
print (' metabolites' % len (model.metabolites))
print (' genes' % len(model.genes))

1 reaction
6 metabolites
2 genes

We can iterate through the model objects to observe the contents

Iterate through the the objects in the model
print ("Reactions")

pPridnt (V=—s======= ")
for x in model.reactions:
print (" : " % (x.id, x.reaction))
print ("")
print ("Metabolites")
pPrlnt (V=—===—====== ")
for x in model.metabolites:
print (' : ' % (x.id, x.formula))
print ("")
print ("Genes")
print ("-———- ")

for x in model.genes:
(continues on next page)

22 Chapter 2. Building a Model

http://dx.doi.org/doi:10.1038/nprot.2011.308

[107]:

cobra Documentation, Release 0.18.1

(continued from previous page)

associated_ids = (i1.1d for i in x.reactions)
print (" is associated with reactions: "s
(x.id, "{" + ", ".join(associated_ids) + "}"))
Reactions

30AS140 : ddcaACP_c + h_c¢c + malACP_c ——> 3omrsACP_c + ACP_c + co2_c

Metabolites
co2_c : CO2
malACP_c : Cl4H22N2010PRS
h c : H
3omrsACP_c : C25H45N209PRS
ddcaACP_c : C23H43N208PRS
ACP_c : Cl1l1H21N207PRS

STM1197 is associated with reactions: {30AS140}
STM2378 1s associlated with reactions: {30AS140}

Last we need to set the objective of the model. Here, we just want this to be the maximization of the flux in the
single reaction we added and we do this by assigning the reaction’s identifier to the objective property of the
model.

: model.objective = '30AS140'

The created objective is a symbolic algebraic expression and we can examine it by printing it

print (model.objective.expression)
print (model.objective.direction)

-1.0+x30AS5140_reverse_65ddc + 1.0+x30AS140
max

which here shows that the solver will maximize the flux in the forward direction.

23

cobra Documentation, Release 0.18.1

24 Chapter 2. Building a Model

CHAPTER
THREE

READING AND WRITING MODELS

Cobrapy supports reading and writing models in SBML (with and without FBC), JSON, YAML, MAT, and pickle
formats. Generally, SBML with FBC version 2 is the preferred format for general use. The JSON format may be
more useful for cobrapy-specific functionality.

The package also ships with test models in various formats for testing purposes.

: import cobra.test

import os
from os.path import join

data_dir = cobra.test.data_dir

print ("mini test files: ")
print (", ".join(i for i in os.listdir(data_dir) if i.startswith("mini")))

textbook_model = cobra.test.create_test_model ("textbook™)
ecoli_model = cobra.test.create_test_model ("ecoli")
salmonella_model = cobra.test.create_test_model ("salmonella™)

mini test files:
mini.json, mini.mat, mini.pickle, mini.yml, mini_cobra.xml, mini_fbcl.xml, mini_
—fbc2.xml, mini_fbc2.xml.bz2, mini_fbc2.xml.gz

3.1 SBML

The Systems Biology Markup Language is an XML-based standard format for distributing models which has
support for COBRA models through the FBC extension version 2.

Cobrapy has native support for reading and writing SBML with FBCv2. Please note that all id’s in the model must
conform to the SBML SID requirements in order to generate a valid SBML file.

cobra.io.read_sbml_model (join(data_dir, "mini_fbc2.xml"))

<Model mini_textbook at 0x1074fd4080>

cobra.io.write_sbml_model (textbook_model, "test_ fbc2.xml")
There are other dialects of SBML prior to FBC 2 which have previously been use to encode COBRA models. The
primary ones is the “COBRA” dialect which used the “notes” fields in SBML files.

Cobrapy can use libsbml, which must be installed separately (see installation instructions) to read and write these
files. When reading in a model, it will automatically detect whether FBC was used or not. When writing a model,
the use_fbc_package flag can be used can be used to write files in this legacy “cobra” format.

Consider having the Ixml package installed as it can speed up parsing considerably.

cobra.io.read_sbml_model (join(data_dir, "mini_cobra.xml"))

25

http://sbml.org
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/Flux_Balance_Constraints_%28flux%29
http://sbml.org/Software/libSBML
http://lxml.de/

[10]:

[11]:

[12]:

cobra Documentation, Release 0.18.1

<Model mini_textbook at 0x112fa6b38>

cobra.io.write_sbml_model (
textbook_model, "test_cobra.xml", use_fbc_package=False)

3.2 JSON

Cobrapy models have a JSON (JavaScript Object Notation) representation. This format was created for interoper-
ability with escher.

cobra.io.load_json_model (join(data_dir, "mini.json"))

<Model mini_textbook at 0x113061080>

cobra.io.save_json_model (textbook_model, "test.json")

3.3 YAML

Cobrapy models have a YAML (YAML Ain’t Markup Language) representation. This format was created for
more human readable model representations and automatic diffs between models.

cobra.io.load_yaml_model (join(data_dir, "mini.yml"))

<Model mini_textbook at 0x113013390>

cobra.io.save_yaml_model (textbook_model, "test.yml")

3.4 MATLAB

Often, models may be imported and exported solely for the purposes of working with the same models in cobrapy
and the MATLAB cobra toolbox. MATLAB has its own “.mat” format for storing variables. Reading and writing
to these mat files from python requires scipy.

A mat file can contain multiple MATLAB variables. Therefore, the variable name of the model in the MATLAB
file can be passed into the reading function:

cobra.io.load_matlab_model (
join(data_dir, "mini.mat"), variable_name="mini_textbook")

<Model mini_textbook at 0x113000b70>

If the mat file contains only a single model, cobra can figure out which variable to read from, and the variable_name
parameter is unnecessary.

cobra.io.load_matlab_model (join (data_dir, "mini.mat"))
<Model mini_textbook at 0x113758438>
Saving models to mat files is also relatively straightforward

cobra.io.save_matlab_model (textbook_model, "test.mat")

26 Chapter 3. Reading and Writing Models

https://en.wikipedia.org/wiki/JSON
https://escher.github.io
https://en.wikipedia.org/wiki/YAML
http://opencobra.github.io/cobratoolbox/

cobra Documentation, Release 0.18.1

3.5 Pickle

Cobra models can be serialized using the python serialization format, pickle.

Please note that use of the pickle format is generally not recommended for most use cases. JSON, SBML, and
MAT are generally the preferred formats.

3.5. Pickle 27

https://docs.python.org/2/library/pickle.html

cobra Documentation, Release 0.18.1

28 Chapter 3. Reading and Writing Models

CHAPTER
FOUR

SIMULATING WITH FBA

Simulations using flux balance analysis can be solved using Model.optimize (). This will maximize or
minimize (maximizing is the default) flux through the objective reactions.

import cobra.test
model = cobra.test.create_test_model ("textbook")

4.1 Running FBA

solution = model.optimize ()
print (solution)

<Solution 0.874 at 0x112eb3d30>

The Model.optimize() function will return a Solution object. A solution object has several attributes:
* objective_value: the objective value
* status: the status from the linear programming solver

» fluxes: a pandas series with flux indexed by reaction identifier. The flux for a reaction variable is the
difference of the primal values for the forward and reverse reaction variables.

e shadow_prices: a pandas series with shadow price indexed by the metabolite identifier.

For example, after the last call to model.optimize (), if the optimization succeeds it’s status will be optimal.
In case the model is infeasible an error is raised.

solution.objective_value

0.8739215069684307

The solvers that can be used with cobrapy are so fast that for many small to mid-size models computing the
solution can be even faster than it takes to collect the values from the solver and convert to them python objects.
Withmodel . optimize, we gather values for all reactions and metabolites and that can take a significant amount
of time if done repeatedly. If we are only interested in the flux value of a single reaction or the objective, it is
faster to instead use model.slim_optimize which only does the optimization and returns the objective value
leaving it up to you to fetch other values that you may need.

$%time
model.optimize () .objective_value

CPU times: user 3.84 ms, sys: 672 ps, total: 4.51 ms
Wall time: 6.16 ms

0.8739215069684307

$%time
model.slim_optimize ()

29

cobra Documentation, Release 0.18.1

CPU times: user 229 ps, sys: 19 us, total: 248 ups
Wall time: 257 us

0.8739215069684307

4.1.1 Analyzing FBA solutions

Models solved using FBA can be further analyzed by using summary methods, which output printed text to give
a quick representation of model behavior. Calling the summary method on the entire model displays information
on the input and output behavior of the model, along with the optimized objective.

: model.summary ()

IN FLUXES OUT FLUXES OBJECTIVES

02_e 21.8 h2o0_e 29.2 Biomass_FEcol... 0.874
glc__D_e 10 co2_e 22.8

nhd_e 4.77 h_e 17.5

pi_e 3.21

In addition, the input-output behavior of individual metabolites can also be inspected using summary methods.
For instance, the following commands can be used to examine the overall redox balance of the model

: model.metabolites.nadh_c.summary ()

PRODUCING REACTIONS ——- Nicotinamide adenine dinucleotide - reduced (nadh_c)
% FLUX RXN ID REACTION

42% 16 GAPD g3p_c + nad_c + pi_c <=> 13dpg_c + h_c + nadh_c
24% 9.28 PDH coa_c + nad_c + pyr_c —-—> accoa_c + co2_c + nadh_c
13% 5.06 AKGDH akg_c + coa_c + nad_c --> co2_c + nadh_c + succ...
13% 5.06 MDH mal_I_c + nad_c <=> h_c + nadh_c + ocaa_c

8% 3.1 Biomass. .. 1.496 3pg_c + 3.7478 accoa_c + 59.81 atp_c + O0...
CONSUMING REACTIONS -- Nicotinamide adenine dinucleotide - reduced (nadh_c)
5 FLUX RXN ID REACTION

100% 38.5 NADH16 4.0 h_c + nadh_c + g8_c ——> 3.0 h_e + nad_c + g...

Or to get a sense of the main energy production and consumption reactions

model .metabolites.atp_c.summary ()

PRODUCING REACTIONS —-- ATP (atp_c)
% FLUX RXN ID REACTION
67% 45.5 ATPS4r adp_c + 4.0 h_e + pi_c <=> atp_c + h2o_c + 3.0 h_c
23% 16 PGK 3pg_c + atp_c <=> 13dpg_c + adp_c
7% 5.06 SUCOAS atp_c + coa_c + succ_c <=> adp_c + pi_c + succoa_c
3% 1.76 PYK adp_c + h_c + pep_c ——> atp_c + pyr_c
CONSUMING REACTIONS —-- ATP (atp_c)
% FLUX RXN ID REACTION
76% 52.3 Biomass... 1.496 3pg_c + 3.7478 accoa_c + 59.81 atp_c + 0...
12% 8.39 ATPM atp_c + h2o_c -—> adp_c + h_c + pi_c
11% 7.48 PFK atp_c + fép_c ——> adp_c + fdp_c + h_c
% 0.223 GLNS atp_c + glu_L_c + nh4d_c ——> adp_c + gln__L_c +...

30 Chapter 4. Simulating with FBA

[11]:

cobra Documentation, Release 0.18.1

4.2 Changing the Objectives

The objective function is determined from the objective_coefficient attribute of the objective reaction(s). Gener-
ally, a “biomass” function which describes the composition of metabolites which make up a cell is used.

: biomass_rxn = model.reactions.get_by_ id("Biomass_Ecoli_core")

Currently in the model, there is only one reaction in the objective (the biomass reaction), with an linear coefficient
of 1.

from cobra.util.solver import linear_reaction_coefficients
linear_ reaction_coefficients (model)

{<Reaction Biomass_Ecoli_core at 0xll2eabd4a8>: 1.0}

The objective function can be changed by assigning Model.objective, which can be a reaction object (or just it’s
name), oradict of {Reaction: objective_coefficient}.

change the objective to ATPM
model.objective = "ATPM"

The upper bound should be 1000, so that we get

the actual optimal value
model.reactions.get_by_id("ATPM") .upper_bound = 1000.
linear_ reaction_coefficients (model)

{<Reaction ATPM at 0x112eab470>: 1.0}

: model.optimize () .objective_value

174.99999999999966

We can also have more complicated objectives including quadratic terms.

4.3 Running FVA

FBA will not give always give unique solution, because multiple flux states can achieve the same optimum. FVA
(or flux variability analysis) finds the ranges of each metabolic flux at the optimum.

from cobra.flux_analysis import flux_variability_analysis

flux_variability_analysis (model, model.reactions[:10])

maximum minimum
ACALD -2.208811e-30 -5.247085e-14

ACALDt 0.000000e+00 -5.247085e-14
ACKr 0.000000e+00 —-8.024953e-14
ACONTa 2.000000e+01 2.000000e+01
ACONTb 2.000000e+01 2.000000e+01
ACt2r 0.000000e+00 —-8.024953e-14
ADK1 3.410605e-13 0.000000e+00
AKGDH 2.000000e+01 2.000000e+01
AKGt2r 0.000000e+00 -2.902643e-14
ALCD2x 0.000000e+00 —-4.547474e-14

Setting parameter fraction_of_optimium=0.90 would give the flux ranges for reactions at 90% optimal-
ity.

cobra.flux_analysis.flux_variability_analysis (
model, model.reactions[:10], fraction_of_optimum=0.9)

4.2. Changing the Objectives 31

[19]:

cobra Documentation, Release 0.18.1

maximum minimum
.000000e+00 -2.692308
.000000e+00 -2.692308
ACKr .635712e-30 -4.117647
ACONTa .000000e+01 8.461538

ACALD 0
0
6
2
ACONTb 2.000000e+01 8.461538
0
1
2
2
0

ACALDt

ACt2r .000000e+00 —-4.117647
ADK1 .750000e+01 0.000000
AKGDH .000000e+01 2.500000
AKGt2r .651196e-16 -1.489362
ALCD2x .000000e+00 -2.333333

The standard FVA may contain loops, i.e. high absolute flux values that only can be high if they are allowed to
participate in loops (a mathematical artifact that cannot happen in vivo). Use the 1oopless argument to avoid
such loops. Below, we can see that FRD7 and SUCD:I reactions can participate in loops but that this is avoided
when using the looplesss FVA.

loop_reactions = [model.reactions.FRD7, model.reactions.SUCDi]
flux_variability_analysis (model, reaction_list=loop_reactions, loopless=False)

maximum minimum
FRD7 980.0 0.0
SUCDi 1000.0 20.0

flux_variability_analysis (model, reaction_list=loop_reactions, loopless=True)

maximum minimum
FRD7 0.0 0.0
SUCDi 20.0 20.0

4.3.1 Running FVA in summary methods

Flux variability analysis can also be embedded in calls to summary methods. For instance, the expected variability
in substrate consumption and product formation can be quickly found by

: model.optimize ()

model . summary (fva=0.95)

IN FLUXES OUT FLUXES OBJECTIVES
id Flux Range id Flux Range ATPM 175
02_e 60 [55.9, 60] co2_e 60 [54.2, 60]
glc__D_e 10 [9.5, 10] h2o0_e 60 [54.2, 60]
nhéd_e 0 [0, 0.673] for_e 0 [0, 5.83]
pi_e 0 [0, 0.171] h_e 0 [0, 5.83]

ac_e 0 [0, 2.06]

acald_e 0 [0, 1.35]

pyr_e 0 [0, 1.35]

etoh_e 0 [0, 1.17]

lac__D_e 0 [0, 1.13]

succ_e 0 [0, 0.875]

akg_e 0 [0, 0.745]

glu__I_e 0 [0, 0.673]

Similarly, variability in metabolite mass balances can also be checked with flux variability analysis.

model . .metabolites.pyr_c.summary (fva=0.95)

(continues on next page)

32 Chapter 4. Simulating with FBA

[22]:

[22]:

cobra Documentation, Release 0.18.1

% FLUX RANGE
50% 10 [1.25
50% 10 [9.5,
% 0 [0, 8
% 0 [0, 8

% FLUX RANGE
100% 20 [13,
% 0 [0, 8
0% 0 [0, 5
0% 0 [0, 1
0% 0 [0, 1
0% 0 [0, O

, 18.8]
10]
.75]
.75]

PFL

PYRt2
LDH_D
Biomass...

(continued from previous page)

REACTION

adp_c + h_c + pep_c ——> atp_c + pyr_c
glc__D_e + pep_c ——> gbp_c + pyr_c
mal__L_c¢ + nad_c ——> co2_c + nadh_c +...
mal__IL_c + nadp_c ——> co2_c + nadph_c...

REACTION

coa_c + nad_c + pyr_c --> accoa_c + C...
atp_c + h2o_c + pyr_c ——> amp_c + 2.0...
coa_c + pyr_c ——> accoa_c + for_c

h_ e + pyr_e <=> h_c + pyr_c
lac__D_c + nad_c <=> h_c + nadh_c + p...
1.496 3pg_c + 3.7478 accoa_c + 59.81

In these summary methods, the values are reported as a the center point +/- the range of the FVA solution, calcu-
lated from the maximum and minimum values.

4.4 Running pFBA

Parsimonious FBA (often written pFBA) finds a flux distribution which gives the optimal growth rate, but mini-
mizes the total sum of flux. This involves solving two sequential linear programs, but is handled transparently by
cobrapy. For more details on pFBA, please see Lewis et al. (2010).

: model.objective = 'Biomass_Ecoli_core'

fba_solution = model.optimize ()
pfba_solution = cobra.flux_analysis.pfba (model)

These functions should give approximately the same objective value.

abs (fba_solution.fluxes|["Biomass_Ecoli_core"] - pfba_solution.fluxes]|

"Biomass_FEcoli_|

7.7715611723760958e

core"])

-16

4.5 Running geometric FBA

Geometric FBA finds a unique optimal flux distribution which is central to the range of possible fluxes. For more
details on geometric FBA, please see K Smallbone, E Simeonidis (2009).

geometric_fba_sol =
geometric_fba_sol

cobra.flux_analysis.geometric_fba (model)

<Solution 0.000 at Ox1l6dfcc88>

4.4. Running pFBA

33

http://dx.doi.org/10.1038/msb.2010.47
http://dx.doi.org/10.1016/j.jtbi.2009.01.027

cobra Documentation, Release 0.18.1

34 Chapter 4. Simulating with FBA

CHAPTER
FIVE

SIMULATING DELETIONS

import pandas
from time import time

import cobra.test

from cobra.flux analysis import (
single_gene_deletion, single_reaction_deletion, double_gene_deletion,
double_reaction_deletion)

cobra_model = cobra.test.create_test_model ("textbook™)
ecoli_model = cobra.test.create_test_model ("ecoli")

5.1 Knocking out single genes and reactions

A commonly asked question when analyzing metabolic models is what will happen if a certain reaction was not
allowed to have any flux at all. This can tested using cobrapy by

print ('complete model: ', cobra_model.optimize())

with cobra_model:
cobra_model.reactions.PFK.knock_out ()
print ('pfk knocked out: ', cobra_model.optimize())

complete model: <Solution 0.874 at 0x7f£41bb363550>
pfk knocked out: <Solution 0.704 at 0x7f41bb363710>

For evaluating genetic manipulation strategies, it is more interesting to examine what happens if given genes
are knocked out as doing so can affect no reactions in case of redundancy, or more reactions if gene when is
participating in more than one reaction.

print ('complete model: ', cobra_model.optimize())
with cobra_model:
cobra_model .genes.bl723.knock_out ()

print ('pfkA knocked out: ', cobra_model.optimize())
cobra_model.genes.b3916.knock_out ()
print ('"pfkB knocked out: ', cobra_model.optimize ())

complete model: <Solution 0.874 at 0x7f£41bb35bf60>
pfkA knocked out: <Solution 0.874 at 0x7f41bb35bd68>
pfkB knocked out: <Solution 0.704 at 0x7£f41bb35bf98>

35

cobra Documentation, Release 0.18.1

5.2 Single Deletions

Perform all single gene deletions on a model

deletion_results

single_gene_deletion (cobra_model)

These can also be done for only a subset of genes

single_gene_deletion (cobra_model,

ids

(b0356)
(b0351)
(b1849)
(b2296)
(b2587)
(b0726)
(b1276)
(b3115)
(b1478)
(b0474)
(b1241)
(b0118)
(b0116)
(b0727)
(b3735)
(b3733)
(b3734)
(b3736)
(s0001)
(b3732)

O O O O O OO OO OO0 oo oo oo

growth

.873922
.873922
.873922
.873922
.873922
.858307
.873922
.873922
.873922
.873922
.873922
.873922
.782351
.858307
.374230
.374230
.374230
.374230
.211141
.374230

status

optimal
optimal
optimal
optimal
optimal
optimal
optimal
optimal
optimal
optimal
optimal
optimal
optimal
optimal
optimal
optimal
optimal
optimal
optimal
optimal

This can also be done for reactions

single_reaction_deletion (cobra_model,

cobra_model.genes |

:20])

cobra_model.reactions[:20])

growth status
ids
(Biomass_FEcoli_core) 0.000000e+00 optimal
(ETOHt2r) 8.739215e-01 optimal
(ATPM) 9.166475e-01 optimal
(ACALD) 8.739215e-01 optimal
(EX_ac_e) 8.739215e-01 optimal
(ALCD2x) 8.739215e-01 optimal
(ACt2r) 8.739215e-01 optimal
(ACALDt) 8.739215e-01 optimal
(ACONTDb) 8.988837e-16 optimal
(AKGt2r) 8.739215e-01 optimal
(ACONTa) 7.726020e-15 optimal
(AKGDH) 8.583074e-01 optimal
(ACKr) 8.739215e-01 optimal
(ADK1) 8.739215e-01 optimal
(CO2t) 4.616696e-01 optimal
(D_LACt2) 8.739215e-01 optimal
(CYTBD) 2.116629e-01 optimal
(CS) 7.726020e-15 optimal
(ENO) 1.937120e-16 optimal
(ATPS4r) 3.742299e-01 optimal
36 Chapter 5. Simulating Deletions

cobra Documentation, Release 0.18.1

5.3 Double Deletions

Double deletions run in a similar way.

double_gene_deletion (
cobra_model, cobra_model.genes[-5:]) .round(4)

growth status

ids

b2465, b2464) .8739 optimal
3919) .7040 optimal
b2935) .8739 optimal
b2935, b0008) .8739 optimal
b2464) .8739 optimal

b0008, b2464
b3919, b2464

(

(

(

(

(

(.8739 optimal
(

(b2935, b3919
(

(

(

(

(

(

(

0

0

0

0

0

0

0.7040 optimal

0.7040 optimal
b2465, b3919 0
b3919, b0008 0
02935, b2464 0
b2465) 0
b2465, b2935) O
b2465, b0008) O
p0008) 0

.7040 optimal
.7040 optimal
.8739 optimal
.8739 optimal
.8739 optimal
.8739 optimal
.8739 optimal

By default, the double deletion function will automatically use multiprocessing, splitting the task over up to 4
cores if they are available. The number of cores can be manually specified as well. Setting use of a single core
will disable use of the multiprocessing library, which often aids debugging.

start = time () # start timer ()
double_gene_deletion (
ecoli_model, ecoli_model.genes[:25], processes=2)
tl = time() - start
print ("Double gene deletions for 200 genes completed in "

)

" sec with 2 cores" % tl)

start = time () # start timer()
double_gene_deletion (
ecoli_model, ecoli_model.genes[:25], processes=1)
t2 = time () - start
print ("Double gene deletions for 200 genes completed in "

sec with 1 core" % t2)

print ("Speedup of x" % (t2 / tl))

Double gene deletions for 200 genes completed in 2.53 sec with 2 cores
Double gene deletions for 200 genes completed in 4.09 sec with 1 core
Speedup of 1.62x

Double deletions can also be run for reactions.

double_reaction_deletion(
cobra_model, cobra_model.reactions[2:7]) .round(4)

growth status
ids
(ACt2r) 0.8739 optimal
(ACONTa, ACONTDb) 0.0000 optimal
(ACONTDb) 0.0000 optimal
(ADK1, ACONTa) 0.0000 optimal
(ADK1) 0.8739 optimal
(ACKr, ACt2r) 0.8739 optimal
(ACONTa) 0.0000 optimal

(continues on next page)

5.3. Double Deletions 37

cobra Documentation, Release 0.18.1

(continued from previous page)

(ADK1, ACONTDb) 0.0000 optimal
(ACKr) 0.8739 optimal
(ACKr, ACONTa) 0.0000 optimal
(ACt2r, ACONTDb) 0.0000 optimal
(ADK1, ACt2r) 0.8739 optimal
(ACKr, ACONTDb) 0.0000 optimal
(ACONTa, ACt2r) 0.0000 optimal
(ACKr, ADK1) 0.8739 optimal
38 Chapter 5. Simulating Deletions

CHAPTER

SIX

PRODUCTION ENVELOPES

Production envelopes (aka phenotype phase planes) will show distinct phases of optimal growth with different use
of two different substrates. For more information, see Edwards et al.

Cobrapy supports calculating these production envelopes and they can easily be plotted using your favorite plotting
package. Here, we will make one for the “textbook™ E. coli core model and demonstrate plotting using matplotlib.

import cobra.test

from cobra.flux analysis import production_envelope

model = cobra.test.create_test_model ("textbook")

We want to make a phenotype phase plane to evaluate uptakes of Glucose and Oxygen.

: prod_env.head()

carbon_source
EX_glc__D_e

IV S o)
=
>
Q
i
Q

flux_minimum

Sw N RO

EX_02_e
-60.000000
-56.842105
-53.684211
-50.526316
-47.368421

Sw N PO

0.

o O

o O

0

o O O O

: prod_env = production_envelope (model,

carbon_yield_maximum

1.
.310050e+00
.620100e+00
.930150e+00
.240200e+00

g w N

442300e-13

mass_yield _maximum

NaN
NaN
NaN
NaN
NaN

["EX_glc__D_e", "EX_o2_e"])

carbon_yield _minimum flux_maximum

mass_yield_minimum
NaN
NaN
NaN
NaN
NaN

0.

o O O O

0.000000
0.072244
0.144488
0.216732
0.288975

O O O O O

EX_glc__ D_e \
-10.0
-10.0
-10.0
-10.0
-10.0

\

If we specify the carbon source, we can also get the carbon and mass yield. For example, temporarily setting the
objective to produce acetate instead we could get production envelope as follows and pandas to quickly plot the

results.

: prod_env.head()

: prod_env = production_envelope (

model, ["EX_o2_e"], objective="EX_ ac_e",

carbon_sources="EX_glc__D_e")

39

http://dx.doi.org/10.1002/bit.10047
http://matplotlib.org/

cobra Documentation, Release 0.18.1

carbon_source carbon_yield_maximum carbon_yield minimum flux_maximum \

0 EX_glc__D_e 2.385536e-15 0.0 0.000000

1 EX_glc__D_e 5.263158e-02 0.0 1.578947

2 EX_glc__D_e 1.052632e-01 0.0 3.157895

3 EX_glc__D_e 1.578947e-01 0.0 4.736842

4 EX_glc__D_e 2.105263e-01 0.0 6.315789
flux_minimum mass_yield_maximum mass_yield_minimum EX_02_e

0 0.0 2.345496e-15 0.0 -60.000000

1 5.174819%e-02 0.0 -56.842105

2 0.0 1.034964e-01 0.0 -53.684211

3 0.0 1.552446e-01 0.0 -50.526316

4 0.0 2.069927e-01 0.0 —-47.368421

tmatplotlib inline

: prod_env.plot (

kind='line', x='EX 02_e', y='carbon_yield _maximum') ;

07
— aarbon_yield_maximum

0.6

05 A

04

03 A

02z

01~

0.0 A

—60 —50 —40 —30 —20 -10 0
EX 02 e

Previous versions of cobrapy included more tailored plots for phase planes which have now been dropped in order
to improve maintainability and enhance the focus of cobrapy. Plotting for cobra models is intended for another
package.

40 Chapter 6. Production envelopes

CHAPTER
SEVEN

7.1 Basic usage

FLUX SAMPLING

The easiest way to get started with flux sampling is using the sample function in the flux_analysis sub-
module. sample takes at least two arguments: a cobra model and the number of samples you want to generate.

from cobra.test import create_test_model
from cobra.sampling import sample

model = create_test_model ("textbook™)
s = sample (model, 100)
s.head ()

ACALD ACALDt ACKr ACONTa
0 -2.060626 -0.766231 —-1.746726 6.136642
1 -1.518217 -1.265778 -0.253608 9.081331
2 —=3.790368 -1.292543 -0.457502 9.340755
3 -5.173189 -4.511308 -2.333962 7.364836
4 -6.787036 -5.645414 -1.521566 6.373250

AKGDH AKGt2r ALCD2x
0 2.174506 -0.242290 -1.294395 -6.117
1 5.979050 -0.225992 -0.252439 -5.072
2 1.652395 -0.333891 -2.497825 -0.674
3 2.504044 -0.051420 -0.661881 -0.681
4 3.452123 -0.126943 -1.141621 -0.510

SUCDi SUCOAS TALA THD2

0 704.483302 -2.174506 6.109618 0.230408
1 718.488475 -5.979050 4.991843 0.137019
2 844.889698 -1.652395 0.673601 9.198001
3 885.755585 -2.504044 0.656561 7.514520
4 749.854462 -3.452123 0.474878 6.235982

[5 rows x 95 columns]

ACONTb
.136642
.081331
.340755
.364836
.373250

[N NEENCEENe RN o))

-1

RPI
270
733
220 0.
200 7.
598 9.

TKT1
.109618
.991843
.673601
.656561
.474878

O O O P+ O

-1.
-0.
-0.
-2.
.521566 4.

SucCCt2_2
33.457990
39.902893
153276 1.
506732 9.
307459

ACt2r
746726 13.
253608 7.
457502 23.
333962 11.

ADK1 \
915541
194475
435794
725401
823373

succt3 \
319917
343192
506968
110446
10.941500

34.
40.

TKT2
.106540
.959315
.673352
.646653
.460514

TPT
.122076
.172389
.770955
.450394
.908012

O O O P> O
O 00 J > W

By default sample uses the opt gp method based on the method presented here as it is suited for larger models and
can run in parallel. By default the sampler uses a single process. This can be changed by using the processes

argument.

: print ("One process:")

$time s = sample (model, 1000)
print ("Two processes:")
$time s = sample (model,

1000, processes=2)

One process:

CPU times: user 19.7 s,
Wall time: 16.1 s

Two processes:

sys: 918 ms, total:

20.6 s

(continues on next page)

41

http://dx.doi.org/10.1371/journal.pone.0086587

cobra Documentation, Release 0.18.1

(continued from previous page)

CPU times: user 1.31 s, sys: 154 ms, total: 1.46 s
Wall time: 8.76 s

Alternatively you can also user Artificial Centering Hit-and-Run for sampling by setting the method to achr.
achr does not support parallel execution but has good convergence and is almost Markovian.

s = sample (model, 100, method="achr™)

In general setting up the sampler is expensive since initial search directions are generated by solving many linear
programming problems. Thus, we recommend to generate as many samples as possible in one go. However, this
might require finer control over the sampling procedure as described in the following section.

7.2 Advanced usage

7.2.1 Sampler objects

The sampling process can be controlled on a lower level by using the sampler classes directly.

from cobra.sampling import OptGPSampler, ACHRSampler

Both sampler classes have standardized interfaces and take some additional argument. For instance the
thinning factor. “Thinning” means only recording samples every n iterations. A higher thinning factors mean
less correlated samples but also larger computation times. By default the samplers use a thinning factor of 100
which creates roughly uncorrelated samples. If you want less samples but better mixing feel free to increase this
parameter. If you want to study convergence for your own model you might want to set it to 1 to obtain all iterates.

achr = ACHRSampler (model, thinning=10)

OptGPSampler has an additional processes argument specifying how many processes are used to create
parallel sampling chains. This should be in the order of your CPU cores for maximum efficiency. As noted before
class initialization can take up to a few minutes due to generation of initial search directions. Sampling on the
other hand is quick.

optgp = OptGPSampler (model, processes=4)

7.2.2 Sampling and validation

Both samplers have a sample function that generates samples from the initialized object and act like the sample
function described above, only that this time it will only accept a single argument, the number of samples. For
OptGPSampler the number of samples should be a multiple of the number of processes, otherwise it will be
increased to the nearest multiple automatically.

sl = achr.sample (100)

s2 = optgp.sample (100)

You can call sample repeatedly and both samplers are optimized to generate large amount of samples without
falling into “numerical traps”. All sampler objects have a validate function in order to check if a set of points
are feasible and give detailed information about feasibility violations in a form of a short code denoting feasibility.
Here the short code is a combination of any of the following letters:

e “v” - valid point
e “I” - lower bound violation

(YA}

e “u” - upper bound violation

42 Chapter 7. Flux sampling

[107]:

[117]:

cobra Documentation, Release 0.18.1

» “e” - equality violation (meaning the point is not a steady state)

For instance for a random flux distribution (should not be feasible):

import numpy as np

bad = np.random.uniform(-1000, 1000, size=len(model.reactions))
achr.validate (np.atleast_2d (bad))

array(['le'], dtype='<U3")

And for our generated samples:

achr.validate (sl)

array(['v', 'V', 'V', 'V', 'V', IVI, le, 'V', 'V', 'V', 'y , 'V', 'V',
'V', 'V', 'V', 'V', 'V', 'V', 'V', 'V', 'V', 'V', 'V‘I 'v‘l 'v ,
'V', 'V', 'V', 'V', 'V', 'V', 'V', 'V', 'V', 'V', ’V', 'V', 'V’,
lvl, lvll Ivll 'V', 'V', le, le, 'V', 'V', 'V', 'V', 'V', 'V',
'V', 'V', 'V', 'V', 'V', 'V', 'V', 'V', 'V', 'V', 'V‘I 'v‘l 'v ,
'V', 'V', 'V', 'V', 'V', 'V', 'V', 'V', 'V', 'V', ’V', 'V', 'V’,
lvl, lvll Ivll 'V', 'V', le, le, 'V', 'V', 'V', 'V', 'V', 'V',
'V', 'V', 'V', 'V', 'V', 'V', 'V', 'V', 'V'], dtype='<U3')

Even though most models are numerically stable enought that the sampler should only generate valid samples we
still urge to check this. validate is pretty fast and works quickly even for large models and many samples. If
you find invalid samples you do not necessarily have to rerun the entire sampling but can exclude them from the
sample DataFrame.

sl_valid = sll[achr.validate(sl) == "v"]
len(sl_valid)

100

7.2.3 Batch sampling

Sampler objects are made for generating billions of samples, however using the sample function might quickly
fill up your RAM when working with genome-scale models. Here, the bat ch method of the sampler objects
might come in handy. batch takes two arguments, the number of samples in each batch and the number of
batches. This will make sense with a small example.

Let’s assume we want to quantify what proportion of our samples will grow. For that we might want to generate
10 batches of 50 samples each and measure what percentage of the individual 100 samples show a growth rate
larger than 0.1. Finally, we want to calculate the mean and standard deviation of those individual percentages.

counts = [np.mean(s.Biomass_Ecoli_core > 0.1) for s in optgp.batch (100, 10)]

print ("Usually $ +- row...".format (
np.mean (counts) x 100.0, np.std(counts) = 100.0))

Usually 14.50% +- 2.16% grow...

7.2. Advanced usage 43

cobra Documentation, Release 0.18.1

7.3 Adding constraints

Flux sampling will respect additional contraints defined in the model. For instance we can add a constraint
enforcing growth in asimilar manner as the section before.

co = model.problem.Constraint (model.reactions.Biomass_Ecoli_core.flux_expression,
—~1b=0.1)
model .add_cons_vars ([co])

Note that this is only for demonstration purposes. usually you could set the lower bound of the reaction directly
instead of creating a new constraint.

s = sample (model, 10)
print (s.Biomass_Ecoli_core)

.124471
.151331
.108145
.144076
.110480
.109024
.111399
.139682
.103511
.116880
Name: Biomass_Ecoli_core, dtype: float64

O 00 J oy U WDN B O
O O O O O O O o o o

As we can see our new constraint was respected.

44 Chapter 7. Flux sampling

CHAPTER
EIGHT

LOOPLESS FBA

The goal of this procedure is identification of a thermodynamically consistent flux state without loops, as implied
by the name. You can find a more detailed description in the method section at the end of the notebook.

smatplotlib inline
import plot_helper

import cobra.test

from cobra import Reaction, Metabolite, Model

from cobra.flux analysis.loopless import add_loopless, loopless_solution
from cobra.flux_analysis import pfba

8.1 Loopless solution

Classical loopless approaches as described below are computationally expensive to solve due to the added mixed-
integer constraints. A much faster, and pragmatic approach is instead to post-process flux distributions to simply
set fluxes to zero wherever they can be zero without changing the fluxes of any exchange reactions in the model.
CycleFreeFlux is an algorithm that can be used to achieve this and in cobrapy it is implemented in the cobra.
flux_analysis.loopless_solution function. loopless_solution will identify the closest flux
distribution (using only loopless elementary flux modes) to the original one. Note that this will not remove loops
which you explicitly requested, for instance by forcing a loop reaction to carry non-zero flux.

Using a larger model than the simple example above, this can be demonstrated as follows

salmonella = cobra.test.create_test_model ('salmonella')
nominal = salmonella.optimize ()
loopless = loopless_solution(salmonella)

import pandas
df = pandas.DataFrame (dict (loopless=loopless.fluxes, nominal=nominal.fluxes))

df .plot.scatter (x="'loopless', y='nominal')

<matplotlib.axes._subplots.AxesSubplot at 0x10f7cb3c8>

45

http://dx.doi.org/10.1093/bioinformatics/btv096

cobra Documentation, Release 0.18.1

30 A

20 A

10 1 ..g‘ ’

nominal
o
1
'.

—10 A L

_20 .

—30 A °

-30 -20 -10 0 10 20 30
loopless

This functionality can also be used in FVA by using the 1loopless=True argument to avoid getting high flux
ranges for reactions that essentially only can reach high fluxes if they are allowed to participate in loops (see the
simulation notebook) leading to much narrower flux ranges.

8.2 Loopless model

Cobrapy also includes the “classical” loopless formulation by Schellenberger et. al. implemented in cobra.
flux_analysis.add_loopless modify the model with additional mixed-integer constraints that make
thermodynamically infeasible loops impossible. This is much slower than the strategy provided above and should
only be used if one of the two following cases applies:

1. You want to combine a non-linear (e.g. quadratic) objective with the loopless condition
2. You want to force the model to be infeasible in the presence of loops independent of the set reaction bounds.

We will demonstrate this with a toy model which has a simple loop cycling A — B — C — A, with A allowed to
enter the system and C allowed to leave. A graphical view of the system is drawn below:

: plot_helper.plot_loop ()

46 Chapter 8. Loopless FBA

https://dx.doi.org/10.1016%2Fj.bpj.2010.12.3707

cobra Documentation, Release 0.18.1

EX A DM C
> < <

: model = Model ()

model.add_metabolites ([Metabolite (i) for i in "ARC"])
model.add_reactions ([Reaction(i) for i in ["EX_ A", "DM_C", "v1", "v2", "v3"]])

model.reactions.EX A.add _metabolites ({"A": 1})

model.reactions.DM_C.add_metabolites ({"C": —-1})
model.reactions.vl.add_metabolites ({"A": -1, "B": 1})
model.reactions.v2.add_metabolites ({"B": -1, "C": 1})
model.reactions.v3.add_metabolites ({"C": -1, "A": 1})
model.objective = 'DM_C'

While this model contains a loop, a flux state exists which has no flux through reaction vs, and is identified by
loopless FBA.

: with model:

add_loopless (model)
solution = model.optimize ()

print ("loopless solution: status = " + solution.status)

print ("loopless solution flux: v3 = " % solution.fluxes["v3"])
loopless solution: status = optimal

loopless solution flux: v3 = 0.0

If there is no forced flux through a loopless reaction, parsimonious FBA will also have no flux through the loop.

solution = pfba (model)

print ("parsimonious solution: status = " + solution.status)

print ("loopless solution flux: v3 = " % solution.fluxes["v3"])
parsimonious solution: status = optimal

loopless solution flux: v3 = 0.0

However, if flux is forced through v3, then there is no longer a feasible loopless solution, but the parsimonious
solution will still exist.

: model.reactions.v3.lower_bound = 1

with model:
add_loopless (model)
try:
solution = model.optimize ()

(continues on next page)

8.2. Loopless model 47

[10]:

cobra Documentation, Release 0.18.1

(continued from previous page)

except:
print ('model is infeasible')

model is infeasible

cobra/util/solver.py:398 UserWarning: solver status is 'infeasible'

solution = pfba (model)

print ("parsimonious solution: status = " + solution.status)

print ("loopless solution flux: v3 = " % solution.fluxes["v3"])
parsimonious solution: status = optimal

loopless solution flux: v3 = 1.0

8.3 Method

loopless_solution is based on a given reference flux distribution. It will look for a new flux distribution
with the following requirements:

1. The objective value is the same as in the reference fluxes.

2. All exchange fluxes have the same value as in the reference distribution.

3. All non-exchange fluxes have the same sign (flow in the same direction) as the reference fluxes.

4. The sum of absolute non-exchange fluxes is minimized.
As proven in the original publication this will identify the “least-loopy” solution closest to the reference fluxes.
If you are using add_loopless this will use the method described here. In summary, it will add G ~ AG

proxy variables and make loops thermodynamically infeasible. This is achieved by the following formulation.

to

maximize vop;
s.t.Sv=0
Ib; < vy < ubj
—M-(1-a;) <v;<M-a
—1000a; 4+ (1 — a;) < G; < —a; +1000(1 — a;)
NimtG =0
a; € {0,1}(8.1)

Sv=0
—M-(l—ai)gviSM-ai
NintG =0

48 Chapter 8. Loopless FBA

http://dx.doi.org/10.1093/bioinformatics/btv096
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030201/

cobra Documentation, Release 0.18.1

Here the index j runs over all reactions and the index i only over internal ones. a; are indicator variables which
equal one if the reaction flux flows in hte forward direction and 0 otherwise. They are used to force the G proxies
to always carry the opposite sign of the flux (as it is the case for the “real” AG values). N, is the nullspace
matrix for internal reactions and is used to find thermodinamically “correct” values for G.

8.3. Method 49

cobra Documentation, Release 0.18.1

50 Chapter 8. Loopless FBA

CHAPTER
NINE

CONSISTENCY TESTING

For most problems, multiple flux states can achieve the same optimum and thus we try to obtain a consistent
network. By this, we mean that there will be mulitple blocked reactions in the network, which gives rise to this
inconsistency. To solve this problem, we use algorithms which can detect all the blocked reactions and also give
us consistent networks.

Let us take a toy network, like so:

Here, v,, where x € {1,2,...,6} represent the flux carried by the reactions as shown above.

import cobra

test_model

vl
v2
v3
v4
v5
v6

= cobra
= cobra
= cobra
= cobra
= cobra
= cobra

test_model.

vl.

v2
v3

vl
v2
v3
v4
v5
v6

reaction

.reaction
.reaction
v4.
v5.
v6.

reaction
reaction
reaction

.bounds =
.bounds =
.bounds =
.bounds =
.bounds =
.bounds =

= cobra.Model ("test

.Reaction("v1l")

.Reaction ("v2")
.Reaction ("v3")
.Reaction ("v4")
.Reaction ("v5")
.Reaction ("ve™)

add_reactions ([Vvl,

= "-> 2 A"
= "A <-> B"
= "A —> D"
= "A > C"
= ¢ => DI
= Wp =>U
(0.0, 3.0)
(=3.0, 3.0)
(0.0, 3.0)
(0.0, 3.0)
(0.0, 3.0)
(0.0, 3.0)

test_model.objective = v6

unknown met
unknown met
unknown met
unknown met

abolite 'A' created
abolite 'B' created
abolite 'D' created
abolite 'C' created

v -
Vg
V3 -
Vg
Vs @

Vg -

_model")

v2, v3, v4,

— 2A
A+ B
A—D
A—C
C—D
D —

v5, vé6])

9.1)
(9.2)
(9.3)
(9.4)
9.5)
(9.6)

51

cobra Documentation, Release 0.18.1

9.1 Using FVA

The first approach we can follow is to use FVA (Flux Variability Analysis) which among many other applica-
tions, is used to detect blocked reactions. The cobra.flux_analysis.find_blocked_reactions ()
function will return a list of all the blocked reactions obtained using FVA.

cobra.flux_analysis.find_blocked_reactions (test_model)

['v2']

As we see above, we are able to obtain the blocked reaction, which in this case is vs.

9.2 Using FASTCC

The second approach to obtaining consistent network in cobrapy is to use FASTCC. Using this method, you can
expect to efficiently obtain an accurate consistent network. For more details regarding the algorithm, please see
Vlassis N, Pacheco MP, Sauter T (2014).

consistent_model = cobra.flux_analysis.fastcc(test_model)
consistent_model.reactions

[<Reaction vl at 0x7fc71ddea5c0>,
<Reaction v3 at 0x7fc71ddea630>,
<Reaction v4 at 0x7fc71ddeab668>,
<Reaction v5 at 0x7fc71ddea6al>,
<Reaction v6 at 0x7fc71ddea6d8>]

Similar to the FVA approach, we are able to identify that vs is indeed the blocked reaction.

52 Chapter 9. Consistency testing

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003424

CHAPTER
TEN

GAPFILLLING

Model gap filling is the task of figuring out which reactions have to be added to a model to make it feasible.
Several such algorithms have been reported e.g. Kumar et al. 2009 and Reed et al. 2006. Cobrapy has a gap
filling implementation that is very similar to that of Reed et al. where we use a mixed-integer linear program to
figure out the smallest number of reactions that need to be added for a user-defined collection of reactions, i.e. a
universal model. Briefly, the problem that we try to solve is

Minimize:
Z Ci * 2;
i
subject to
Sv=20
v* >t
I v <y

Where [, u are lower and upper bounds for reaction i and z is an indicator variable that is zero if the reaction is not
used and otherwise 1, ¢ is a user-defined cost associated with using the ith reaction, v* is the flux of the objective
and ¢ a lower bound for that objective. To demonstrate, let’s take a model and remove some essential reactions
from it.

import cobra.test
from cobra.flux analysis import gapfill
model = cobra.test.create_test_model ("salmonella")

In this model D-Fructose-6-phosphate is an essential metabolite. We will remove all the reactions using it, and at
them to a separate model.

universal = cobra.Model ("universal_ reactions")

for i in [i.id for i in model.metabolites.f6p_c.reactions]:
reaction = model.reactions.get_by_id (i)
universal.add_reaction (reaction.copy())
model.remove_reactions ([reaction])

Now, because of these gaps, the model won’t grow.

: model.optimize () .objective_value

0.0

We will use can use the model’s original objective, growth, to figure out which of the removed reactions are
required for the model be feasible again. This is very similar to making the ‘no-growth but growth (NGG)’
predictions of Kumar et al. 2009.

53

http://dx.doi.org/10.1371/journal.pcbi.1000308
http://www.pnas.org/content/103/46/17480.short
http://dx.doi.org/10.1371/journal.pcbi.1000308

cobra Documentation, Release 0.18.1

solution = gapfill (model, universal, demand_reactions=False)
for reaction in solution[0]:
print (reaction.id)

GF6PTA
F6PP
TKT2
FBP
MANGP I

We can obtain multiple possible reaction sets by having the algorithm go through multiple iterations.

result = gapfill (model, universal, demand_reactions=False, iterations=4)
for i, entries in enumerate (result) :
print ("---- Run ——=" % (i + 1))

for e in entries:
print (e.id)

-——— Run 1 ———-—
GF6PTA

F6PP

TKT2

FBP

MANG6PI

-——— Run 2 —-———
GF6PTA

TALA

PGI

F6PA

MANG6PI

-——— Run 3 ————
GF6PTA

F6PP

TKT2

FBP

MANG6PI

-——— Run 4 ———-
GF6PTA

TALA

PGI

F6PA

MANGP I

We can also instead of using the original objective, specify a given metabolite that we want the model to be able
to produce.

: with model:

model.objective = model.add_boundary (model.metabolites.fb6p_c, type='demand')
solution = gapfill (model, universal)
for reaction in solution[0]:

print (reaction.id)

FBP

Finally, note that using mixed-integer linear programming is computationally quite expensive and for larger mod-
els you may want to consider alternative gap filling methods and reconstruction methods.

54 Chapter 10. Gapfillling

http://opencobra.github.io/cobrapy/tags/gapfilling/
http://opencobra.github.io/cobrapy/tags/reconstruction/

CHAPTER
ELEVEN

GROWTH MEDIA

The availability of nutrients has a major impact on metabolic fluxes and cobrapy provides some helpers to
manage the exchanges between the external environment and your metabolic model. In experimental settings
the “environment” is usually constituted by the growth medium, ergo the concentrations of all metabolites and
co-factors available to the modeled organism. However, constraint-based metabolic models only consider fluxes.
Thus, you can not simply use concentrations since fluxes have the unit mmol / [gDW h] (concentration per
gram dry weight of cells and hour).

Also, you are setting an upper bound for the particular import flux and not the flux itself. There are some crude
approximations. For instance, if you supply 1 mol of glucose every 24h to 1 gram of bacteria you might set the
upper exchange flux for glucoseto 1 mol / [1 gDW % 24 h] since that is the nominal maximum that can
be imported. There is no guarantee however that glucose will be consumed with that flux. Thus, the preferred
data for exchange fluxes are direct flux measurements as the ones obtained from timecourse exa-metabolome
measurements for instance.

So how does that look in COBRApy? The current growth medium of a model is managed by the medium attribute.

from cobra.test import create_test_model

model = create_test_model ("textbook™)
model .medium

{'EX_co2_e': 1000.0,
'EX_glc__D_e': 10.0,
'EX_h_e': 1000.0,
'EX_h20_e': 1000.0,
'EX_nh4_e': 1000.0,
'EX_o02_e': 1000.0,
'EX_pi_e': 1000.0}

This will return a dictionary that contains the upper flux bounds for all active exchange fluxes (the ones having
non-zero flux bounds). Right now we see that we have enabled aerobic growth. You can modify a growth medium
of a model by assigning a dictionary to model .medium that maps exchange reactions to their respective upper
import bounds. For now let us enforce anaerobic growth by shutting off the oxygen import.

]: medium = model.medium

medium["EX_ o2 e"] = 0.0
model .medium = medium

model .medium

{'EX_co2_e': 1000.0,
'EX_glc__D_e': 10.0,
'EX_h_e': 1000.0,
'EX_h20_e': 1000.0,
'EX_nh4_e': 1000.0,
'EX_pi_e': 1000.0}

As we can see oxygen import is now removed from the list of active exchanges and we can verify that this also
leads to a lower growth rate.

55

cobra Documentation, Release 0.18.1

: model.slim_optimize ()

0.21166294973530736

There is a small trap here. model .medium can not be assigned to directly. So the following will not work:

: model .medium["EX_co2_e"] = 0.0

model .medium

{'EX_co2_e': 1000.0,
'EX_glc__D_e': 10.0,
'EX_h_e': 1000.0,
'EX_h20_e': 1000.0,
'EX_nh4_e': 1000.0,
'EX_pi_e': 1000.0}

As you can see EX_co2_e is not set to zero. This is because model.medium is just a copy of the current exchange
fluxes. Assigning to it directly with model.medium[...] = ... will not change the model. You have to
assign an entire dictionary with the changed import flux upper bounds:

: medium = model.medium

medium["EX_co2_e"] = 0.0
model .medium = medium

model .medium # now it worked

{'EX_glc__ D _e': 10.0,
'EX_h_e': 1000.0,
'EX_h20_e': 1000.0,
'EX_nh4_e': 1000.0,
'EX_pi_e': 1000.0}

Setting the growth medium also connects to the context manager, so you can set a specific growth medium in a
reversible manner.

: model = create_test_model ("textbook™)

with model:
medium = model.medium
medium["EX_o02_e"] = 0.0
model .medium = medium
print (model.slim_optimize ())
print (model.slim_optimize())
model .medium

0.21166294973530736
0.8739215069684102

{'EX_co2_e': 1000.0,
'EX_glc__D_e': 10.0,
'EX_h_e': 1000.0,
'EX_h20_e': 1000.0,
'EX_nh4_e': 1000.0,
'EX_o02_e': 1000.0,
'EX_pi_e': 1000.0}

So the medium change is only applied within the with block and reverted automatically.

56 Chapter 11. Growth media

cobra Documentation, Release 0.18.1

11.1 Minimal media

In some cases you might be interested in the smallest growth medium that can maintain a specific growth rate,
the so called “minimal medium”. For this we provide the function minimal_medium which by default obtains
the medium with the lowest total import flux. This function needs two arguments: the model and the minimum
growth rate (or other objective) the model has to achieve.

from cobra.medium import minimal_medium

max_growth = model.slim_optimize ()
minimal_medium (model, max_growth)

EX_glc__ D_e 10.000000

EX_nhid_e 4.765319
EX_o02_e 21.799493
EX_pi_e 3.214895

dtype: floaté64

So we see that growth is actually limited by glucose import.

Alternatively you might be interested in a minimal medium with the smallest number of active imports. This can
be achieved by using the minimize_ components argument (note that this uses a MIP formulation and will
therefore be much slower).

: minimal medium(model, 0.1, minimize_components=True)

EX_glc__D_e 10.000000
EX_nhid_e 1.042503
EX_pi_e 0.703318

dtype: float64

When minimizing the number of import fluxes there may be many alternative solutions. To obtain several of
those you can also pass a positive integer to minimize_components which will give you at most that many
alternative solutions. Let us try that with our model and also use the open_exchanges argument which will
assign a large upper bound to all import reactions in the model. The return type will be a pandas.DataFrame.

: minimal_medium(model, 0.8, minimize_components=8, open_exchanges=True)

0 1 2 3
EX_fru_e 0.000000 521.357767 0.000000 0.000000
EX_glc__ D_e 0.000000 0.000000 0.000000 519.750758
EX_gln__ L_e 0.000000 40.698058 18.848678 0.000000
EX_glu__L e 348.101944 0.000000 0.000000 0.000000
EX_mal__L_e 0.000000 0.000000 1000.000000 0.000000
EX_nh4_e 0.000000 0.000000 0.000000 81.026921
EX_o2_e 500.000000 0.000000 0.000000 0.000000
EX_pi_e 66.431529 54.913419 12.583458 54.664344

So there are 4 alternative solutions in total. One aerobic and three anaerobic ones using different carbon sources.

11.2 Boundary reactions

Apart from exchange reactions there are other types of boundary reactions such as demand or sink reactions.
cobrapy uses various heuristics to identify those and they can be accessed by using the appropriate attribute.

For exchange reactions:

ecoll = create_test_model ("ecoli")
ecoli.exchanges[0:5]

11.1. Minimal media 57

[11]:

[12]:

[12]:

[13]:

cobra Documentation, Release 0.18.1

[<Reaction EX_12ppd__R_e at 0x131b4a58d0>,
<Reaction EX_12ppd__S_e at 0x131b471c50>,
<Reaction EX_l4glucan_e at 0x131b471el0>,
<Reaction EX_15dap_e at 0x131b471e4d8>,
<Reaction EX_23camp_e at 0x131b471£98>]

For demand reactions:

ecoli.demands

[<Reaction DM_4CRSOL at 0x131b3162b0>,
<Reaction DM_5DRIB at 0x131b4712e8>,
<Reaction DM_AACALD at 0x131b471400>,
<Reaction DM_AMOB at 0x131b4714e0>,
<Reaction DM_MTHTHF at 0x131b4715f£8>,
<Reaction DM_OXAM at 0x131b4716d8>]

For sink reactions:

ecoli.sinks

[]

All boundary reactions (any reaction that consumes or introduces mass into the system) can be obtained with the

boundary attribute:

ecoli.boundary[0:10]

[<Reaction DM_4CRSOL at 0x131b3162b0>,
<Reaction DM_5DRIB at 0x131b4712e8>,
<Reaction DM_AACALD at 0x131b471400>,
<Reaction DM_AMOB at 0x131b4714e0>,
<Reaction DM_MTHTHF at 0x131b4715f£8>,
<Reaction DM_OXAM at 0x131b4716d8>,
<Reaction EX_12ppd_ R e at 0x131b4a58d0>,
<Reaction EX_12ppd__S_e at 0x131b471c50>,
<Reaction EX_l4glucan_e at 0x131b471el0>,
<Reaction EX_15dap_e at 0x131b471e48>]

58

Chapter 11. Growth media

CHAPTER
TWELVE

SOLVERS

A constraint-based reconstruction and analysis model for biological systems is actually just an application of
a class of discrete optimization problems typically solved with linear, mixed integer or quadratic programming
techniques. Cobrapy does not implement any algorithm to find solutions to such problems but rather creates a
biologically motivated abstraction to these techniques to make it easier to think of how metabolic systems work
without paying much attention to how that formulates to an optimization problem.

The actual solving is instead done by tools such as the free software glpk or commercial tools gurobi and cplex
which are all made available as a common programmers interface via the optlang package.

When you have defined your model, you can switch solver backend by simply assigning to the model.solver
property.

: import cobra.test

model = cobra.test.create_test_model ('textbook")

: model.solver = 'glpk'

or if you have cplex installed
model.solver = 'cplex'

For information on how to configure and tune the solver, please see the documentation for optlang project and
note that model . solver is simply an optlang object of class Model.

: type (model.solver)

optlang.cplex_interface.Model

12.1 Internal solver interfaces

Cobrapy also contains its own solver interfaces but these are now deprecated and will be removed completely in
the near future. For documentation of how to use these, please refer to older documentation.

59

https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Quadratic_programming
https://www.gnu.org/software/glpk/
http://www.gurobi.com/
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://github.com/biosustain/optlang
http://optlang.readthedocs.io
http://cobrapy.readthedocs.io/en/0.5.11/

cobra Documentation, Release 0.18.1

60 Chapter 12. Solvers

CHAPTER
THIRTEEN

TAILORED CONSTRAINTS, VARIABLES AND OBJECTIVES

Thanks to the use of symbolic expressions via the optlang mathematical modeling package, it is relatively straight-
forward to add new variables, constraints and advanced objectives that cannot be easily formulated as a combi-
nation of different reaction and their corresponding upper and lower bounds. Here we demonstrate this optlang
functionality which is exposed via the model.solver.interface.

13.1 Constraints

Suppose we want to ensure that two reactions have the same flux in our model. We can add this criteria as
constraint to our model using the optlang solver interface by simply defining the relevant expression as follows.

import cobra.test
model = cobra.test.create_test_model ('textbook")

same_flux = model.problem.Constraint (
model.reactions.FBA.flux_expression - model.reactions.NH4t.flux_expression,
1b=0,
ub=0)

model .add_cons_vars (same_flux)

The flux for our reaction of interest is obtained by the model .reactions.FBA.flux_expression which
is simply the sum of the forward and reverse flux, i.e.,

] : model.reactions.FBA.flux_expression

1.0«FBA - 1.0+xFBA_reverse_84806

Now I can maximize growth rate whilst the fluxes of reactions ‘FBA’ and ‘NH4t’ are constrained to be (near)
identical.

solution = model.optimize ()
print (solution.fluxes['FBA'], solution.fluxes['NH4t'],
solution.objective_value)

4.66274904774 4.66274904774 0.855110960926157

It is also possible to add many constraints at once. For large models, with constraints involving many reactions,
the efficient way to do this is to first build a dictionary of the linear coefficients for every flux, and then add the
constraint at once. For example, suppose we want to add a constrain on the sum of the absolute values of every
flux in the network to be less than 100:

coefficients = dict ()

for rxn in model.reactions:
coefficients[rxn.forward_variable] = 1.
coefficients[rxn.reverse_variable] = 1.

constraint = model.problem.Constraint (0, 1lb=0, ub=100)
model.add_cons_vars (constraint)

(continues on next page)

61

cobra Documentation, Release 0.18.1

(continued from previous page)

model.solver.update ()
constraint.set_linear_coefficients (coefficients=coefficients)

13.2 Objectives

Simple objective such as the maximization of the flux through one or more reactions can conveniently be done by
simply assigning to the model . objective property as we have seen in previous chapters, e.g.,

: model = cobra.test.create_test_model ('textbook")
with model:
model.objective = {model.reactions.Biomass_Ecoli_core: 1}

model .optimize ()
print (model.reactions.Biomass_Ecoli_core.flux)

0.8739215069684307

The objectives mathematical expression is seen by

: model.objective.expression

—-1.0+xBiomass_Ecoli_core_reverse_2cdba + 1.0xBiomass_FEcoli_core

But suppose we need a more complicated objective, such as minimizing the Euclidean distance of the solution to
the origin minus another variable, while subject to additional linear constraints. This is an objective function with
both linear and quadratic components.

Consider the example problem:

min 1 (22 + %) —y

subject to
r+y=2
x>0
y=>0

This (admittedly very artificial) problem can be visualized graphically where the optimum is indicated by the blue
dot on the line of feasible solutions.

$matplotlib inline
import plot_helper

plot_helper.plot_gp2 ()

62 Chapter 13. Tailored constraints, variables and objectives

[9]:

[107]:

cobra Documentation, Release 0.18.1

2.0

1.0

ST
=l LSS T T

D
>

1.0 2.0

We return to the textbook model and set the solver to one that can handle quadratic objectives such as cplex. We
then add the linear constraint that the sum of our x and y reactions, that we set to FBA and NH4t, must equal 2.

: model.solver = 'cplex'

sum_two = model.problem.Constraint (
model.reactions.FBA.flux_expression + model.reactions.NH4t.flux_expression,
1b=2,
ub=2)

model.add_cons_vars (sum_two)

Next we add the quadratic objective

quadratic_objective = model.problem.Objective (
0.5 » model.reactions.NH4t.flux_expressionx*2 + 0.5 *
model.reactions.FBA.flux_expressionxx2 -
model.reactions.FBA.flux_expression,
direction="min")

model.objective = quadratic_objective

solution = model.optimize (objective_sense=None)

print (solution.fluxes['NH4t'], solution.fluxes['FBA'])

0.5 1.5

13.2. Objectives 63

[11]:

[12]:

cobra Documentation, Release 0.18.1

13.3 Variables

We can also create additional variables to facilitate studying the effects of new constraints and variables. Suppose
we want to study the difference in flux between nitrogen and carbon uptake whilst we block other reactions. For
this it will may help to add another variable representing this difference.

model = cobra.test.create_test_model ('textbook")
difference = model.problem.Variable ('difference')

‘We use constraints to define what values this variable shall take

constraint = model.problem.Constraint (
model.reactions.EX_glc_ D_e.flux_expression -
model.reactions.EX_nh4_e.flux_expression - difference,
1b=0,
ub=0)

model.add_cons_vars ([difference, constraint])

Now we can access that difference directly during our knock-out exploration by looking at its primal value.

for reaction in model.reactions[:5]:
with model:
reaction.knock_out ()
model.optimize ()
print (model.solver.variables.difference.primal)

-5.234680806802543
-5.2346808068025386
-5.234680806802525
-1.8644444444444337
-1.8644444444444466

64 Chapter 13. Tailored constraints, variables and objectives

CHAPTER
FOURTEEN

DYNAMIC FLUX BALANCE ANALYSIS (DFBA) IN COBRAPY

The following notebook shows a simple, but slow example of implementing dFBA using COBRApy and
scipy.integrate.solve_ivp. This notebook shows a static optimization approach (SOA) implementation and should
not be considered production ready.

The model considers only basic Michaelis-Menten limited growth on glucose.

import numpy as np
from tgdm import tgdm

from scipy.integrate import solve_ivp

import matplotlib.pyplot as plt
$matplotlib inline

Create or load a cobrapy model. Here, we use the ‘textbook’ e-coli core model.

import cobra
from cobra.test import create_test_model
model = create_test_model ('textbook")

14.1 Set up the dynamic system

Dynamic flux balance analysis couples a dynamic system in external cellular concentrations to a pseudo-steady
state metabolic model.

In this notebook, we define the function add_dynamic_bounds (model, y) toconvert the external metabo-
lite concentrations into bounds on the boundary fluxes in the metabolic model.

def add_dynamic_bpounds (model, y):
"""Use external concentrations to bound the uptake flux of glucose."""
biomass, glucose =y # expand the boundary species
glucose_max_import = -10 % glucose / (5 + glucose)
model .reactions.EX_glc_ D_e.lower_bound = glucose_max_import

def dynamic_system(t, vy):
"""Calculate the time derivative of external species.”"""

biomass, glucose =y # expand the boundary species

Calculate the specific exchanges fluxes at the given external concentrations.
with model:
add_dynamic_bounds (model, vy)

cobra.util.add_lp_feasibility (model)
feasibility = cobra.util.fix_objective_as_constraint (model)

(continues on next page)

65

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

cobra Documentation, Release 0.18.1

(continued from previous page)

lex_constraints = cobra.util.add_lexicographic_constraints(
model, ['Biomass_Ecoli_core', 'EX glc_ D _e'l, ['max', 'max'])

Since the calculated fluxes are specific rates, we multiply them by the
biomass concentration to get the bulk exchange rates.

fluxes = lex_constraints.values

fluxes *= biomass

This implementation is x#not+x* efficient, so I display the current
simulation time using a progress bar.
if dynamic_system.pbar is not None:
dynamic_system.pbar.update (1)
dynamic_system.pbar.set_description ('t = [(:.37}'.format (t))

return fluxes

dynamic_system.pbar = None

def infeasible_event(t, vy):

mmn

Determine solution feasibility.

Avoiding infeasible solutions is handled by solve_ivp's built—-in event,

—detection.

This function re-solves the LP to determine whether or not the solution is_,
—~feasible

(and if not, how far it is from feasibility). When the sign of this function,,
—changes

from -epsilon to positive, we know the solution is no longer feasible.

with model:
add_dynamic_bounds (model, vy)

cobra.util.add_lp_feasibility (model)
feasibility = cobra.util.fix_objective_as_constraint (model)

return feasibility - infeasible_event.epsilon

infeasible_event.epsilon = 1E-6
infeasible_event.direction = 1
infeasible_event.terminal = True

14.2 Run the dynamic FBA simulation

[4]: ts = np.linspace (0, 15, 100) # Desired integration resolution and interval
y0O = [0.1, 10]

with tgdm () as pbar:
dynamic_system.pbar = pbar

sol = solve_ivp (
fun=dynamic_systemn,
events=[infeasible_event],
t_span=(ts.min(), ts.max()),
(continues on next page)

66 Chapter 14. Dynamic Flux Balance Analysis (dFBA) in COBRApy

[5]:

cobra Documentation, Release 0.18.1

y0=y0,

t_eval=ts,

rtol=1le-6,

atol=1e-8,

method="BDF"'
)

t = 5.804: : 185it [00:16, 11.27it/s]

(continued from previous page)

Because the culture runs out of glucose, the simulation terminates early. The exact time of this ‘cell death’ is

recorded in sol.t_events.

sol
message: 'A termination event occurred.'
nfev: 179
njev: 2
nlu: 14

sol: None
status: 1
success: True

t: array ([0. , 0.15151515, 0.3030303 , 0.45454545, 0.606060061,
0.75757576, 0.90909091, 1.06060606, 1.21212121, 1.36363636,
1.51515152, 1.66666667, 1.81818182, 1.96969697, 2.12121212,
2.27272727, 2.42424242, 2.57575758, 2.72727273, 2.87878788,
3.03030303, 3.18181818, 3.33333333, 3.48484848, 3.63636364,
3.78787879, 3.93939394, 4.09090909, 4.24242424, 4.39393939,
4.54545455, 4.6969697 , 4.84848485, 5. , 5.15151515,
5.3030303 , 5.45454545, 5.60606061, 5.75757576])

t_events: [array([5.80191035])]

y: array ([[0.1 , 0.10897602, 0.11871674, 0.12927916, 0.14072254,
0.15310825, 0.16649936, 0.18095988, 0.19655403, 0.21334507,
0.23139394, 0.25075753, 0.27148649, 0.29362257, 0.31719545,
0.34221886, 0.36868605, 0.3965646 , 0.42579062, 0.4562623 ,
0.48783322, 0.52030582, 0.55342574, 0.58687742, 0.62028461,
0.65321433, 0.685188 , 0.71570065, 0.74425054, 0.77037369,
0.79368263, 0.81390289, 0.83089676, 0.84467165, 0.85535715,
0.8631722 , 0.86843813, 0.8715096 , 0.8727423 1,

[10. , 9.8947027 , 9.78040248, 9.65642157, 9.52205334,
9.37656372, 9.21919615, 9.04917892, 8.86573366, 8.6680879 ,
8.45549026, 8.22722915, 7.98265735, 7.72122137, 7.442497 ,
7.14623236, 6.83239879, 6.50124888, 6.15338213, 5.78981735,
5.41206877, 5.02222068, 4.62299297, 4.21779303, 3.81071525,
3.40650104, 3.01042208, 2.6280723 , 2.26504645, 1.92656158,
1.61703023, 1.33965598, 1.09616507, 0.88670502, 0.70995892,
0.56344028, 0.44387781, 0.34762375, 0.27100065]11)

14.2.1 Plot timelines of biomass and glucose

ax = plt.subplot (111)

ax.plot(sol.t, sol.y.T[:, 0])

ax2 = plt.twinx (ax)

ax2.plot(sol.t, sol.y.T[:, 1], color='r")

ax.set_ylabel ('Biomass', color='b'")
ax2.set_ylabel ('Glucose', color='r'")

Text (0, 0.5, 'Glucose')

14.2. Run the dynamic FBA simulation

67

cobra Documentation, Release 0.18.1

091 -10
0a
0.7 -8
06
i FE W
T 05 g
5 5
& g4 4 O
03
-2
02
D-l 1 T T T T T I- D
o 2 3 4 5 G
68 Chapter 14. Dynamic Flux Balance Analysis (dFBA) in COBRApy

[5]:

CHAPTER
FIFTEEN

USING THE COBRA TOOLBOX WITH COBRAPY

This example demonstrates using COBRA toolbox commands in MATLAB from python through pymatbridge.

%load _ext pymatbridge

Starting MATLAB on ZMQ socket ipc:///tmp/pymatbridge-57££5429-02d9-4ela-8ed0-
—44e391fb0df7

Send 'exit' command to kill the server

...MATLAB started and connected!

import cobra.test
m = cobra.test.create_test_model ("textbook™)

The model_to_pymatbridge function will send the model to the workspace with the given variable name.

from cobra.io.mat import model_to_pymatbridge
model_to_pymatbridge (m, variable_name="model")

Now in the MATLAB workspace, the variable name ‘model’ holds a COBRA toolbox struct encoding the model.

$%matlab
model

model =

rev: [95x1 double]
metNames: {72x1 cell}
b: [72x1 double]
metCharge: [72x1 double]
c: [95x1 double]
csense: [72x1 char]
genes: {137x1 cell}
metFormulas: {72x1 cell}
rxns: {95x1 cell}
grRules: {95x1 cell}
rxnNames: {95x1 cell}
description: [11x1l char]
S: [72x95 double]
ub: [95x1 double]
1b: [95x1 double]
mets: {72x1 cell}
subSystems: {95x1 cell}

First, we have to initialize the COBRA toolbox in MATLAB.

$%matlab --silent
warning ('off'); % this works around a pymatbridge bug
(continues on next page)

69

http://arokem.github.io/python-matlab-bridge/

L/,Z

cobra Documentation, Release 0.18.1

addpath (genpath ('~/cobratoolbox/"'));
initCobraToolbox () ;

(continued from previous page)

Commands from the COBRA toolbox can now be run on the model

$%matlab
optimizeCbModel (model)

ans =

x: [95x1 double]
f: 0.8739
yv: [71x1 double]
w: [95x1 double]
stat: 1
origStat: 5
solver: 'glpk'

time: 3.2911

FBA in the COBRA toolbox should give the same result as cobrapy (but maybe just a little bit slower :))

Stime
m.optimize () .f

CPU times: user 0 ns, sys: 0 ns, total: 0 ns

Wall time: 5.48 ups

0.8739215069684909

70

Chapter 15. Using the COBRA toolbox with cobrapy

CHAPTER
SIXTEEN

FAQ

This document will address frequently asked questions not addressed in other pages of the documentation.

16.1 How do | install cobrapy?

Please see the INSTALL.rst file.

16.2 How do | cite cobrapy?

Please cite the 2013 publication: 10.1186/1752-0509-7-74

16.3 How do | rename reactions or metabolites?

TL;DR Use Model . repair afterwards

When renaming metabolites or reactions, there are issues because cobra indexes based off of ID’s, which can
cause errors. For example:

: from _ future_ import print_function

import cobra.test
model = cobra.test.create_test_model ()

for metabolite in model.metabolites:
metabolite.id = "test " + metabolite.id

try:

model .metabolites.get_by_id(model.metabolites[0].1id)
except KeyError as e:

print (repr (e))

The Model.repair function will rebuild the necessary indexes

: model.repair ()

model .metabolites.get_by_id(model.metabolites[0].1id)

: <Metabolite test_dcaACP_c at 0x110£f09630>

7

https://github.com/opencobra/cobrapy/blob/master/INSTALL.rst
http://dx.doi.org/doi:10.1186/1752-0509-7-74

cobra Documentation, Release 0.18.1

16.4 How do | delete a gene?

That depends on what precisely you mean by delete a gene.

If you want to simulate the model with a gene knockout, use the cobra.manipulation.
delete_model_genes function. The effects of this function are reversed by cobra.manipulation.
undelete_model_genes.

: model = cobra.test.create_test_model ()

PGI = model.reactions.get_by_id("PGI")

print ("bounds before knockout:", (PGI.lower_bound, PGI.upper_bound))
cobra.manipulation.delete_model_genes (model, ["STM4221"])

print ("bounds after knockouts", (PGI.lower_bound, PGI.upper_bound))

bounds before knockout: (-1000.0, 1000.0)
bounds after knockouts (0.0, 0.0)

If you want to actually remove all traces of a gene from a model, this is more difficult because this will require
changing all the gene_reaction_rule strings for reactions involving the gene.

16.5 How do | change the reversibility of a Reaction?

Reaction.reversibility is a property in cobra which is computed when it is requested from the lower
and upper bounds.

: model = cobra.test.create_test_model ()

model.reactions.get_by_id("PGI") .reversibility

True

Trying to set it directly will result in an error or warning:

lExy:

model .reactions.get_by id("PGI") .reversibility = False
except Exception as e:
print (repr(e))

cobra/core/reaction.py:501 UserWarning: Setting reaction reversibility is ignored

The way to change the reversibility is to change the bounds to make the reaction irreversible.

: model.reactions.get_by_id("PGI").lower_bound = 10

model.reactions.get_by_id("PGI") .reversibility

: False

16.6 How do | generate an LP file from a COBRA model?

16.6.1 For optlang based solvers

With optlang solvers, the LP formulation of a model is obtained by it’s string representation. All solvers behave
the same way.

: with open('test.lp', 'w') as out:

out.write (str (model.solver))

72 Chapter 16. FAQ

cobra Documentation, Release 0.18.1

16.6.2 For cobrapy’s internal solvers

With the internal solvers, we first create the problem and use functions bundled with the solver.

Please note that unlike the LP file format, the MPS file format does not specify objective direction and is always

a minimization. Some (but not all) solvers will rewrite the maximization as a minimization.

: model = cobra.test.create_test_model ()
glpk through cglpk
glpk = cobra.solvers.cglpk.create_problem (model)
glpk.write ("test.1lp")
glpk.write ("test.mps") # will not rewrite objective
cplex

cplex = cobra.solvers.cplex_solver.create_problem(model)
cplex.write ("test.lp")
cplex.write ("test.mps") # rewrites objective

16.6.3 How do | visualize my flux solutions?

cobrapy works well with the escher package, which is well suited to this purpose. Consult the escher documenta-

tion for examples.

16.6. How do I generate an LP file from a COBRA model?

73

https://escher.github.io/
https://escher.readthedocs.org/en/latest/
https://escher.readthedocs.org/en/latest/

cobra Documentation, Release 0.18.1

74 Chapter 16. FAQ

CHAPTER
SEVENTEEN

API REFERENCE

This page contains auto-generated API reference documentation'.

17.1 cobra

17.1.1 Subpackages
cobra.core

Subpackages

cobra.core.summary

Submodules
cobra.core.summary.metabolite_summary

Define the MetaboliteSummary class.

Module Contents

Classes

MetaboliteSummary Define the metabolite summary.

class cobra.core.summary.metabolite_summary.MetaboliteSummary (metabolite,
model,

**kwargs)
Bases: cobra.core.summary.Summary

Define the metabolite summary.

metabolite
The metabolite to summarize.

Type cobra.Metabolite

See also:

Summary Parent that defines further attributes.

! Created with sphinx-autoapi

75

https://github.com/readthedocs/sphinx-autoapi

cobra Documentation, Release 0.18.1

ReactionSummary, ModelSummary
_generate (self)
Returns flux_summary — The DataFrame of flux summary data.
Return type pandas.DataFrame
to_frame (self)
Returns
Return type A pandas.DataFrame of the summary.
_to_table (self)
Returns

Return type A string of the summary table.

cobra.core.summary.model_summary

Define the ModelSummary class.

Module Contents

Classes

ModelSummary Define the model summary.

cobra.core.summary.model_summary.logger

class cobra.core.summary.model_summary.ModelSummary (model, **kwargs)
Bases: cobra.core.summary.Summary

Define the model summary.

See also:
Summary Parent that defines further attributes.

MetaboliteSummary, ReactionSummary
_generate (self)
Returns flux_summary — The DataFrame of flux summary data.
Return type pandas.DataFrame
to_frame (self)
Returns
Return type A pandas.DataFrame of the summary.
_to_table (self)
Returns

Return type A string of the summary table.

76 Chapter 17. API Reference

cobra Documentation, Release 0.18.1

cobra.core. summary.summary

Define the Summary class.

Module Contents

Classes
Summary Define the abstract base summary.
class cobra.core.summary.summary .Summary (model, solution=None, thresh-

old=None, fva=None, names=False,

float_format="{:.3G}" format, **kwargs)
Bases: object

Define the abstract base summary.

model
The metabolic model in which to generate a summary description.

Type cobra.Model

solution
A solution that matches the given model.

Type cobra.Solution

threshold
Threshold below which fluxes are not reported.

Type float, optional

fva
The result of a flux variability analysis (FVA) involving reactions of interest if an FVA was requested.

Type pandas.DataFrame, optional

names
Whether or not to use object names rather than identifiers.

Type bool

float_ format
Format string for displaying floats.

Type callable

to_frame ()
Return a data frame representation of the summary.

abstract _generate (self)
Generate the summary for the required cobra object.

This is an abstract method and thus the subclass needs to implement it.

_process_flux dataframe (self, flux_dataframe)
Process a flux DataFrame for convenient downstream analysis.

This method removes flux entries which are below the threshold and also adds information regarding
the direction of the fluxes. It is used in both ModelSummary and MetaboliteSummary.

Parameters flux_dataframe (pandas.DataFrame) — The pandas.DataFrame to
process.

Returns

17.1. cobra 77

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

Return type A processed pandas.DataFrame.

abstract to_frame (self)
Generate a pandas DataFrame.

This is an abstract method and thus the subclass needs to implement it.

abstract _to_table (self)
Generate a pretty-print table.

This is an abstract method and thus the subclass needs to implement it.

__str__ (self)
Return str(self).

_repr_html_ (self)

Package Contents

Classes
Summary Define the abstract base summary.
MetaboliteSummary Define the metabolite summary.
ModelSummary Define the model summary.

class cobra.core.summary.Summary (model, solution=None, threshold=None, fva=None,

names=False, float_format="{:.3G}' format, **kwargs)
Bases: object

Define the abstract base summary.

model
The metabolic model in which to generate a summary description.

Type cobra.Model

solution
A solution that matches the given model.

Type cobra.Solution

threshold
Threshold below which fluxes are not reported.

Type float, optional

fva
The result of a flux variability analysis (FVA) involving reactions of interest if an FVA was requested.

Type pandas.DataFrame, optional

names
Whether or not to use object names rather than identifiers.

Type bool

float_format
Format string for displaying floats.

Type callable

to_frame ()
Return a data frame representation of the summary.

abstract _generate (self)
Generate the summary for the required cobra object.

78

Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

This is an abstract method and thus the subclass needs to implement it.

_process_flux_dataframe (self, flux_dataframe)
Process a flux DataFrame for convenient downstream analysis.

This method removes flux entries which are below the threshold and also adds information regarding
the direction of the fluxes. It is used in both ModelSummary and MetaboliteSummary.

Parameters flux_dataframe (pandas.DataFrame) — The pandas.DataFrame to
process.

Returns
Return type A processed pandas.DataFrame.

abstract to_frame (self)
Generate a pandas DataFrame.

This is an abstract method and thus the subclass needs to implement it.

abstract _to_table (self)
Generate a pretty-print table.

This is an abstract method and thus the subclass needs to implement it.

__str__ (self)
Return str(self).

_repr_html_ (self)

class cobra.core.summary.MetaboliteSummary (metabolite, model, **kwargs)
Bases: cobra.core. summary.Summary

Define the metabolite summary.

metabolite
The metabolite to summarize.

Type cobra.Metabolite

See also:
Summary Parent that defines further attributes.

ReactionSummary, ModelSummary
_generate (self)
Returns flux_summary — The DataFrame of flux summary data.
Return type pandas.DataFrame
to_frame (self)
Returns
Return type A pandas.DataFrame of the summary.
_to_table (self)
Returns
Return type A string of the summary table.

class cobra.core.summary.ModelSummary (model, **kwargs)
Bases: cobra.core.summary.Summary

Define the model summary.

See also:

Summary Parent that defines further attributes.

17.1. cobra 79

cobra Documentation, Release 0.18.1

MetaboliteSummary,ReactionSummary
_generate (self)
Returns flux_summary — The DataFrame of flux summary data.
Return type pandas.DataFrame
to_frame (self)
Returns
Return type A pandas.DataFrame of the summary.
_to_table (self)
Returns

Return type A string of the summary table.

Submodules

cobra.core.configuration

Define the global configuration.

Module Contents

Classes

Configuration Define the configuration to be singleton based.

class cobra.core.configuration.Configuration
Bases: six.with_metaclass ()

Define the configuration to be singleton based.

cobra.core.dictlist

Module Contents

Classes

DictList A combined dict and list

class cobra.core.dictlist.DictList (*args)
Bases: 1ist

A combined dict and list

This object behaves like a list, but has the O(1) speed benefits of a dict when looking up elements by their
id.

has_id (self, id)

_check (self, id)
make sure duplicate id’s are not added. This function is called before adding in elements.

_generate_index (self)

80 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#list

cobra Documentation, Release 0.18.1

rebuild the _dict index

get_by_id (self, id)
return the element with a matching id

list_attr (self, attribute)
return a list of the given attribute for every object

get_by_any (self, iterable)
Get a list of members using several different ways of indexing

Parameters iterable (list (if not, turned into single element
list)) — list where each element is either int (referring to an index in in this
DictList), string (a id of a member in this DictList) or member of this DictList for
pass-through

Returns a list of members
Return type list

query (self, search_function, attribute=None)

Query the list
Parameters
e search_function (a string, regular expression or
function) — Used to find the matching elements in the list. - a regular

expression (possibly compiled), in which case the given attribute of the object
should match the regular expression. - a function which takes one argument and
returns True for desired values

* attribute (string or None) - the name attribute of the object to passed
as argument to the search_function. If this is None, the object itself is used.

Returns a new list of objects which match the query

Return type DictList

Examples

>>> import cobra.test

>>> model = cobra.test.create_test_model ('textbook'")
>>> model.reactions.query (lambda x: x.boundary)

>>> import re

>>> regex = re.compile('"g', flags=re.IGNORECASE)
>>> model .metabolites.query (regex, attribute='name')

_replace_on_id (self, new_object)
Replace an object by another with the same id.

append (self, object)
append object to end

union (self, iterable)
adds elements with id’s not already in the model

extend (self, iterable)
extend list by appending elements from the iterable

_extend_nocheck (self, iterable)
extends without checking for uniqueness

This function should only be used internally by DictList when it can guarantee elements are already
unique (as in when coming from self or other DictList). It will be faster because it skips these checks.

__sub___ (self, other)
X.__sub_ (y)<==>Xx-y

17.1. cobra 81

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None

cobra Documentation, Release 0.18.1

Parameters other (iterable) — other must contain only unique id’s present in the
list

__isub__ (self, other)
X.__sub_ (y)<==>x-=Yy

Parameters other (iterable) — other must contain only unique id’s present in the
list

__add___ (self, other)
X.__add__(y) <==>x+y

Parameters other (iterable) — other must contain only unique id’s which do not
intersect with self

__iadd__ (self, other)
X.__dadd__(y) <==>x+=Yy

Parameters other (iterable) — other must contain only unique id’s whcih do not
intersect with self

__reduce___ (self)
Helper for pickle.

__getstate__ (self)
gets internal state

This is only provided for backwards compatibility so older versions of cobrapy can load pickles
generated with cobrapy. In reality, the “_dict” state is ignored when loading a pickle

__setstate__ (self, state)
sets internal state

Ignore the passed in state and recalculate it. This is only for compatibility with older pickles which
did not correctly specify the initialization class

index (self, id, *args)
Determine the position in the list

id: A string or a Object

__contains___ (self, object)
DictList.__contains__(object) <==> object in DictList

object: str or Object
__copy.___(self)

insert (self, index, object)
insert object before index

pop (self, *args)
remove and return item at index (default last).

add (self, x)
Opposite of remove. Mirrors set.add

remove (self, x)

Warning: Internal use only

reverse (self)
reverse IN PLACE

sort (self, cmp=None, key=None, reverse=False)
stable sort IN PLACE

82 Chapter 17. API Reference

cobra Documentation, Release 0.18.1

cmp(x,y) ->-1,0, 1

__getitem__ (self, i)
X.__getitem__(y) <==> x[y]

__setitem__ (self,i,y)
Set self[key] to value.

__delitem__ (self, index)
Delete self[key].

__getslice__ (self,i,j)
__setslice__ (self,i,j,y)
__delslice__ (self,i,])
__getattr__ (self, attr)

__dir__ (self)
Default dir() implementation.

cobra.core.formula
Module Contents

Classes

Formula Describes a Chemical Formula

cobra.core.formula.element_ re

class cobra.core.formula.Formula (formula=None)
Bases: cobra.core.object.Object

Describes a Chemical Formula

Parameters formula (string)— A legal formula string contains only letters and numbers.

__add___(self, other_formula)
Combine two molecular formulas.

Parameters other_ formula (Formula, str)-— string for a chemical formula
Returns The combined formula
Return type Formula

parse_composition (self)
Breaks the chemical formula down by element.

property weight (self)
Calculate the mol mass of the compound

Returns the mol mass
Return type float

cobra.core.formula.elements_and molecular_weights

17.1. cobra

83

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

cobra Documentation, Release 0.18.1

cobra.core.gene

Module Contents

Classes
GPRCleaner Parses compiled ast of a gene_reaction_rule and iden-
tifies genes
Gene A Gene in a cobra model
Functions

ast2str(expr, level=0, names=None)

convert compiled ast to gene_reaction_rule str

eval_gpr(expr, knockouts)

evaluate compiled ast of gene_reaction_rule with

knockouts

parse_gpr(str_expr)

parse gpr into AST

cobra.core.gene.keywords
cobra.core.gene.keyword_re

cobra.core.gene.number_start_re

cobra.core.gene.replacements = [['.',

' __COBRA_DOT__ '],

cobra.core.gene.ast2str (expr, level=0, names=None)

convert compiled ast to gene_reaction_rule str

Parameters

* expr (str) - string for a gene reaction rule, e.g “a and b”

* level (int) - internal use only

["l",

'_COBRA_SQUOTE__ '],

* names (dict) — Dict where each element id a gene identifier and the value is the
gene name. Use this to get a rule str which uses names instead. This should be done
for display purposes only. All gene_reaction_rule strings which are computed with

should use the id.
Returns The gene reaction rule
Return type string

cobra.core.gene.eval_gpr (expr, knockouts)

evaluate compiled ast of gene_reaction_rule with knockouts

Parameters

* expr (Expression)— The ast of the gene reaction rule

* knockouts (DictList, set)— Setof genes that are knocked out

Returns True if the gene reaction rule is true with the given knockouts otherwise false

Return type bool

class cobra.core.gene.GPRCleaner
Bases: ast .NodeTransformer

Parses compiled ast of a gene_reaction_rule and identifies genes

Parts of the tree are rewritten to allow periods in gene ID’s and bitwise boolean operations

visit_Name (self, node)

84

Chapter 17. API Reference

[llll’

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/ast.html#ast.NodeTransformer

cobra Documentation, Release 0.18.1

visit_BinOp (self, node)

cobra.core.gene.parse_gpr (str_expr)
parse gpr into AST

Parameters str_expr (string) — string with the gene reaction rule to parse
Returns elements ast_tree and gene_ids as a set
Return type tuple

class cobra.core.gene.Gene (id=None, name=", functional=True)
Bases: cobra.core.species.Species

A Gene in a cobra model
Parameters
* id (string)— The identifier to associate the gene with
* name (string)— A longer human readable name for the gene

e functional (bool) — Indicates whether the gene is functional. If it is not func-
tional then it cannot be used in an enzyme complex nor can its products be used.

property functional (self)
A flag indicating if the gene is functional.

Changing the flag is reverted upon exit if executed within the model as context.

knock_out (self)
Knockout gene by marking it as non-functional and setting all associated reactions bounds to zero.

The change is reverted upon exit if executed within the model as context.

remove_from_model (self, model=None, make_dependent_reactions_nonfunctional=True)
Removes the association

Parameters
* model (cobra model)— The model to remove the gene from

* make_dependent_reactions_nonfunctional (bool) — If True then
replace the gene with ‘False’ in the gene association, else replace the gene with
“True’

Deprecated since version 0.4: Use cobra.manipulation.delete_model_genes to simulate knockouts
and cobra.manipulation.remove_genes to remove genes from the model.

_repr_html_ (self)

cobra.core.group

Define the group class.

Module Contents

Classes

Group Manage groups via this implementation of the SBML
group specification.

class cobra.core.group.Group (id, name=", members=None, kind=None)
Bases: cobra.core.object.Object

17.1. cobra 85

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

Manage groups via this implementation of the SBML group specification.

Group 1is a class for holding information regarding a pathways, subsystems, or other custom groupings of
objects within a cobra.Model object.

Parameters
e id (str) - The identifier to associate with this group
* name (str, optional)— A human readable name for the group

* members (iterable, optional) — A DictList containing references to
cobra.Model-associated objects that belong to the group.

e kind ({"collection", "classification", "partonomy"},
optional) — The kind of group, as specified for the Groups feature in the SBML
level 3 package specification. Can be any of “classification”, “partonomy”, or
“collection”. The default is “collection”. Please consult the SBML level 3 package
specification to ensure you are using the proper value for kind. In short, members of
a “classification” group should have an “is-a” relationship to the group (e.g. member
is-a polar compound, or member is-a transporter). Members of a “partonomy” group
should have a “part-of” relationship (e.g. member is part-of glycolysis). Members
of a “collection” group do not have an implied relationship between the members,
so use this value for kind when in doubt (e.g. member is a gap-filled reaction, or
member is involved in a disease phenotype).

KIND_TYPES = ['collection', 'classification', 'partonomy']
__len__ (self)

property members (self)

property kind (self)

add_members (self, new_members)
Add objects to the group.

Parameters new_members (1ist)— A list of cobrapy objects to add to the group.

remove_members (self, to_remove)
Remove objects from the group.

Parameters to_remove (1ist)— A list of cobra objects to remove from the group

cobra.core.metabolite

Define the Metabolite class.

Module Contents

Classes
Metabolite Metabolite is a class for holding information regard-
ing
cobra.core.metabolite.element_re
class cobra.core.metabolite.Metabolite (id=None, formula=None, name=",

charge=None, compartment=None)
Bases: cobra.core.species.Species

Metabolite is a class for holding information regarding a metabolite in a cobra.Reaction object.

Parameters

86 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

cobra Documentation, Release 0.18.1

e id (st r) - the identifier to associate with the metabolite

e formula (str)— Chemical formula (e.g. H20)

* name (st r)— A human readable name.

* charge (float) — The charge number of the metabolite

* compartment (str or None)-— Compartment of the metabolite.
_set_id_with_model (self, value)

property constraint (self)
Get the constraints associated with this metabolite from the solve

Returns the optlang constraint for this metabolite
Return type optlang.<interface>.Constraint

property elements (self)
Dictionary of elements as keys and their count in the metabolite as integer. When set, the formula
property is update accordingly

property formula_weight (self)
Calculate the formula weight

property vy (self)
The shadow price for the metabolite in the most recent solution

Shadow prices are computed from the dual values of the bounds in the solution.

property shadow_price (self)
The shadow price in the most recent solution.

Shadow price is the dual value of the corresponding constraint in the model.

Warning:
* Accessing shadow prices through a Solution object is the safer, preferred, and only guaran-

teed to be correct way. You can see how to do so easily in the examples.

» Shadow price is retrieved from the currently defined self._model.solver. The solver status is
checked but there are no guarantees that the current solver state is the one you are looking
for.

* If you modify the underlying model after an optimization, you will retrieve the old opti-
mization values.

Raises

* RuntimeError — If the underlying model was never optimized beforehand or
the metabolite is not part of a model.

* OptimizationError — If the solver status is anything other than ‘optimal’.

17.1. cobra 87

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#RuntimeError

cobra Documentation, Release 0.18.1

Examples

>>> import cobra

>>> import cobra.test

>>> model = cobra.test.create_test_model ("textbook™)
>>> solution = model.optimize ()

>>> model .metabolites.glc__D_e.shadow_price
-0.09166474637510488

>>> solution.shadow_prices.glc__D_e
-0.091664746375104883

remove_from_model (self, destructive=False)
Removes the association from self.model

The change is reverted upon exit when using the model as a context.

Parameters destructive (bool) — If False then the metabolite is removed from
all associated reactions. If True then all associated reactions are removed from the
Model.

summary (self, solution=None, threshold=0.01, fva=None, names=False,

float_format="{:.3g}'" format)
Create a summary of the producing and consuming fluxes.

This method requires the model for which this metabolite is a part to be solved.
Parameters

e solution (cobra.Solution, optional)— A previous model solution
to use for generating the summary. If None, the summary method will resolve
the model. Note that the solution object must match the model, i.e., changes to
the model such as changed bounds, added or removed reactions are not taken into
account by this method (default None).

e threshold (float, optional) — Threshold below which fluxes are not
reported. May not be smaller than the model tolerance (default 0.01).

* fva (pandas.DataFrame or float, optional)— Whether or not to
include flux variability analysis in the output. If given, fva should either be a
previous FVA solution matching the model or a float between 0 and 1 representing
the fraction of the optimum objective to be searched (default None).

* names (bool, optional)- Emitreaction and metabolite names rather than
identifiers (default False).

* float_format (callable, optional)-—Format string for floats (default
'{:3G}'.format).

Returns

Return type cobra.MetaboliteSummary
See also:
Reaction.summary (), Model.summary ()

_repr_html_ (self)

88 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

cobra.core.model

Define the Model class.

Module Contents

Classes

Model Class representation for a cobra model

cobra.core.model.logger
cobra.core.model.configuration

class cobra.core.model .Model (id_or_model=None, name=None)
Bases: cobra.core.object.Object

Class representation for a cobra model
Parameters

* id_or_model (Model, string) — Either an existing Model object in which
case a new model object is instantiated with the same properties as the original model,
or an identifier to associate with the model as a string.

¢ name (string)- Human readable name for the model

reactions
A DictList where the key is the reaction identifier and the value a Reaction

Type DictList

metabolites
A DictList where the key is the metabolite identifier and the value a Metabolite

Type DictList

genes
A DictList where the key is the gene identifier and the value a Gene

Type DictList

groups
A DictList where the key is the group identifier and the value a Group

Type DictList

solution
The last obtained solution from optimizing the model.

Type Solution

__setstate___ (self, state)
Make sure all cobra.Objects in the model point to the model.

__getstate__ (self)
Get state for serialization.

Ensures that the context stack is cleared prior to serialization, since partial functions cannot be pickled
reliably.

property solver (self)
Get or set the attached solver instance.

The associated the solver object, which manages the interaction with the associated solver, e.g. glpk.

17.1. cobra 89

cobra Documentation, Release 0.18.1

This property is useful for accessing the optimization problem directly and to define additional non-

metabolic constraints.

Examples

>>> import cobra.test

>>> model = cobra.test.create_test_model ("textbook™)

>>> new = model.problem.Constraint (model.objective.expression,
>>> 1b=0.99)

>>> model.solver.add (new)

property tolerance (self)
property description (self)

get_metabolite_compartments (self)
Return all metabolites’ compartments.

property compartments (self)
property medium (self)

__add___ (self, other_model)
Add the content of another model to this model (+).

The model is copied as a new object, with a new model identifier, and copies of all the reactions in
the other model are added to this model. The objective is the sum of the objective expressions for the

two models.

__iadd__ (self, other_model)
Incrementally add the content of another model to this model (+=).

Copies of all the reactions in the other model are added to this model. The objective is the sum of the

objective expressions for the two models.

copy (self)

Provides a partial ‘deepcopy’ of the Model. All of the Metabolite, Gene, and Reaction objects are

created anew but in a faster fashion than deepcopy

add_metabolites (self, metabolite_list)
Will add a list of metabolites to the model object and add new constraints accordingly.

The change is reverted upon exit when using the model as a context.
Parameters metabolite_list (A list of cobra.core.Metabolite objects) —

remove_metabolites (self, metabolite_list, destructive=False)
Remove a list of metabolites from the the object.

The change is reverted upon exit when using the model as a context.
Parameters

* metabolite_list (Ilist) — A list with cobra.Metabolite objects as ele-
ments.

¢ destructive (bool) — If False then the metabolite is removed from all as-
sociated reactions. If True then all associated reactions are removed from the
Model.

add_reaction (self, reaction)
Will add a cobra.Reaction object to the model, if reaction.id is not in self.reactions.

Parameters

e reaction (cobra.Reaction) - The reaction to add

90 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

* (0.6) Use ~cobra.Model.add reactions instead
(Deprecated) —

add_boundary (self, metabolite, type='exchange', reaction_id=None, lb=None, ub=None,
sbo_term=None)
Add a boundary reaction for a given metabolite.

There are three different types of pre-defined boundary reactions: exchange, demand, and sink reac-
tions. An exchange reaction is a reversible, unbalanced reaction that adds to or removes an extracellu-
lar metabolite from the extracellular compartment. A demand reaction is an irreversible reaction that
consumes an intracellular metabolite. A sink is similar to an exchange but specifically for intracellular
metabolites.

If you set the reaction type to something else, you must specify the desired identifier of the created
reaction along with its upper and lower bound. The name will be given by the metabolite name and
the given type.

Parameters

* metabolite (cobra.Metabolite)— Any given metabolite. The compart-
ment is not checked but you are encouraged to stick to the definition of exchanges
and sinks.

* type (str, {"exchange", "demand", "sink"})— Using one of the
pre-defined reaction types is easiest. If you want to create your own kind of
boundary reaction choose any other string, e.g., ‘my-boundary’.

* reaction_id (str, optional) - The ID of the resulting reaction. This
takes precedence over the auto-generated identifiers but beware that it might make
boundary reactions harder to identify afterwards when using model.boundary or
specifically model.exchanges etc.

* 1b(float, optional)- The lower bound of the resulting reaction.
* ub(float, optional)- The upper bound of the resulting reaction.

e sbo_term (str, optional) - A correct SBO term is set for the available
types. If a custom type is chosen, a suitable SBO term should also be set.

Returns The created boundary reaction.

Return type cobra.Reaction

Examples

>>> import cobra.test

>>> model cobra.test.create_test_model ("textbook™")
>>> demand = model.add_boundary (model.metabolites.atp_c, type="demand")
>>> demand.id

'DM_atp_c'

>>> demand.name

'ATP demand'

>>> demand.bounds

(0, 1000.0)

>>> demand.build_reaction_string()

'atp_c ——> '

add_reactions (self, reaction_list)
Add reactions to the model.

Reactions with identifiers identical to a reaction already in the model are ignored.
The change is reverted upon exit when using the model as a context.

Parameters reaction_list (1ist)— A list of cobra.Reaction objects

17.1. cobra 91

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

cobra Documentation, Release 0.18.1

remove_reactions (self, reactions, remove_orphans=~False)
Remove reactions from the model.

The change is reverted upon exit when using the model as a context.
Parameters

e reactions (1ist) — A list with reactions (cobra.Reaction), or their id’s, to
remove

* remove_orphans (bool)-Remove orphaned genes and metabolites from the
model as well

add_groups (self, group_list)
Add groups to the model.

Groups with identifiers identical to a group already in the model are ignored.

If any group contains members that are not in the model, these members are added to the model as
well. Only metabolites, reactions, and genes can have groups.

Parameters group_list (11ist)— A list of cobra.Group objects to add to the model.

remove_groups (self, group_list)
Remove groups from the model.

Members of each group are not removed from the model (i.e. metabolites, reactions, and genes in the
group stay in the model after any groups containing them are removed).

Parameters group_list (1ist)— A list of cobra.Group objects to remove from the
model.

get_associated_groups (self, element)
Returns a list of groups that an element (reaction, metabolite, gene) is associated with.

Parameters element (cobra.Reaction, cobra.Metabolite, or cobra.Gene) —
Returns All groups that the provided object is a member of
Return type list of cobra.Group

add_cons_vars (self, what, **kwargs)
Add constraints and variables to the model’s mathematical problem.

Useful for variables and constraints that can not be expressed with reactions and simple lower and
upper bounds.

Additions are reversed upon exit if the model itself is used as context.

Parameters

* what (list or tuple of optlang variables or
constraints.)— The variables or constraints to add to the model. Must be of
class optlang.interface.Variable or optlang.interface. Constraint.

* xxkwargs (keyword arguments)— Passed to solver.add()

remove_cons_vars (self, what)
Remove variables and constraints from the model’s mathematical problem.

Remove variables and constraints that were added directly to the model’s underlying mathematical
problem. Removals are reversed upon exit if the model itself is used as context.

Parameters what (list or tuple of optlang variables or
constraints.) — The variables or constraints to add to the model. Must be
of class optlang.interface.Variable or optlang.interface.Constraint.

property problem (self)
The interface to the model’s underlying mathematical problem.

92 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

cobra Documentation, Release 0.18.1

Solutions to cobra models are obtained by formulating a mathematical problem and solving it. Co-
brapy uses the optlang package to accomplish that and with this property you can get access to the
problem interface directly.

Returns The problem interface that defines methods for interacting with the problem and
associated solver directly.

Return type optlang.interface

property variables (self)
The mathematical variables in the cobra model.

In a cobra model, most variables are reactions. However, for specific use cases, it may also be useful
to have other types of variables. This property defines all variables currently associated with the
model’s problem.

Returns A container with all associated variables.
Return type optlang.container.Container

property constraints (self)
The constraints in the cobra model.

In a cobra model, most constraints are metabolites and their stoichiometries. However, for specific
use cases, it may also be useful to have other types of constraints. This property defines all constraints
currently associated with the model’s problem.

Returns A container with all associated constraints.
Return type optlang.container.Container

property boundary (self)
Boundary reactions in the model. Reactions that either have no substrate or product.

property exchanges (self)
Exchange reactions in model. Reactions that exchange mass with the exterior. Uses annotations and
heuristics to exclude non-exchanges such as sink reactions.

property demands (self)
Demand reactions in model. Irreversible reactions that accumulate or consume a metabolite in the
inside of the model.

property sinks (self)
Sink reactions in model. Reversible reactions that accumulate or consume a metabolite in the inside
of the model.

_populate_solver (self, reaction_list, metabolite_list=None)
Populate attached solver with constraints and variables that model the provided reactions.

slim_optimize (self, error_value=float('nan'), message=None)
Optimize model without creating a solution object.

Creating a full solution object implies fetching shadow prices and flux values for all reactions and
metabolites from the solver object. This necessarily takes some time and in cases where only one
or two values are of interest, it is recommended to instead use this function which does not create a
solution object returning only the value of the objective. Note however that the optimize() function
uses efficient means to fetch values so if you need fluxes/shadow prices for more than say 4 reac-
tions/metabolites, then the total speed increase of slim_optimize versus optimize is expected to be
small or even negative depending on how you fetch the values after optimization.

Parameters

* error_value (float, None)— The value to return if optimization failed
due to e.g. infeasibility. If None, raise OptimizationError if the optimization
fails.

* message (string) — Error message to use if the model optimization did not
succeed.

17.1. cobra 93

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

cobra Documentation, Release 0.18.1

Returns The objective value.

Return type float

optimize (self, objective_sense=None, raise_error=False)
Optimize the model using flux balance analysis.

Parameters

* objective_sense ({None, 'maximize' 'minimize'},
optional) — Whether fluxes should be maximized or minimized. In
case of None, the previous direction is used.

* raise_error (bool)—

If true, raise an OptimizationError if solver status is not optimal.

Notes

Only the most commonly used parameters are presented here. Additional parameters for cobra.solvers

may be available and specified with the appropriate keyword argument.

repair (self, rebuild_index=True, rebuild_relationships=True)

Update all indexes and pointers in a model
Parameters

e rebuild_index (bool) — rebuild the indices kept in reactions, metabolites
and genes

* rebuild_relationships (bool) — reset all associations between genes,
metabolites, model and then re-add them.

property objective (self)

Get or set the solver objective

Before introduction of the optlang based problems, this function returned the objective reactions as a
list. With optlang, the objective is not limited a simple linear summation of individual reaction fluxes,
making that return value ambiguous. Henceforth, use cobra.util.solver.linear_reaction_coefficients to
get a dictionary of reactions with their linear coefficients (empty if there are none)

The set value can be dictionary (reactions as keys, linear coefficients as values), string (reaction iden-
tifier), int (reaction index), Reaction or problem.Objective or sympy expression directly interpreted
as objectives.

When using a HistoryManager context, this attribute can be set temporarily, reversed when the exiting
the context.

property objective_direction (self)

Get or set the objective direction.

When using a HistoryManager context, this attribute can be set temporarily, reversed when exiting
the context.

summary (self, solution=None, threshold=0.01, Jfva=None, names=False,

float_format="{:.3g}'" format)
Create a summary of the exchange fluxes of the model.

Parameters

* solution (cobra.Solution, optional)— A previous model solution
to use for generating the summary. If None, the summary method will resolve
the model. Note that the solution object must match the model, i.e., changes to
the model such as changed bounds, added or removed reactions are not taken into
account by this method (default None).

e threshold (float, optional) — Threshold below which fluxes are not
reported. May not be smaller than the model tolerance (default 0.01).

94

Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

cobra Documentation, Release 0.18.1

e fva (pandas.DataFrame or float, optional)— Whether or not to
include flux variability analysis in the output. If given, fva should either be a
previous FVA solution matching the model or a float between 0 and 1 representing
the fraction of the optimum objective to be searched (default None).

e names (bool, optional)—- Emitreaction and metabolite names rather than
identifiers (default False).

e float_format (callable, optional)-—Format string for floats (default
'{:3G}'.format).

Returns
Return type cobra.ModelSummary
See also:
Reaction.summary (),Metabolite.summary ()

__enter__ (self)
Record all future changes to the model, undoing them when a call to __exit__ is received

__exit__ (self, type, value, traceback)
Pop the top context manager and trigger the undo functions

merge (self, right, prefix_existing=None, inplace=True, objective="left')
Merge two models to create a model with the reactions from both models.

Custom constraints and variables from right models are also copied to left model, however note that,
constraints and variables are assumed to be the same if they have the same name.

right [cobra.Model] The model to add reactions from

prefix_existing [string] Prefix the reaction identifier in the right that already exist in the left model
with this string.

inplace [bool] Add reactions from right directly to left model object. Otherwise, create a new model
leaving the left model untouched. When done within the model as context, changes to the
models are reverted upon exit.

objective [string] One of ‘left’, ‘right’ or ‘sum’ for setting the objective of the resulting model to that
of the corresponding model or the sum of both.

_repr_html_ (self)

cobra.core.object
Module Contents

Classes

Object Defines common behavior of object in cobra.core

class cobra.core.object.Object (id=None, name="")
Bases: object

Defines common behavior of object in cobra.core
property id (self)
_set_id_with_model (self, value)
property annotation (self)

__getstate__ (self)

17.1. cobra 95

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

cobra Documentation, Release 0.18.1

To prevent excessive replication during deepcopy.

__repr__ (self)
Return repr(self).
__str__ (self)

Return str(self).

cobra.core.reaction

Define the Reaction class.

Module Contents

Classes

Reaction

Reaction is a class for holding information regarding

cobra.core.reaction.
cobra.core.reaction.
cobra.core.reaction.
cobra.core.reaction.
cobra.core.reaction.

cobra.core.reaction.

cobra.core.reaction
cobra.core.reaction

cobra.core.reaction

config
and_or_ search
uppercase_AND
uppercase_OR
gpr_clean

compartment_finder

._reversible arrow finder
._forward_arrow_finder

._reverse_arrow_finder

class cobra.core.reaction.Reaction (id=None, name=", subsystem=", lower_bound=0.0,

upper_bound=None)

Bases: cobra.core.object.Object

Reaction is a class for holding information regarding a biochemical reaction in a cobra.Model object.

Reactions are by default irreversible with bounds (0.0, cobra.Configuration().upper_bound) if no bounds
are provided on creation. To create an irreversible reaction use lower_bound=None, resulting in reaction
bounds of (cobra.Configuration().lower_bound, cobra.Configuration().upper_bound).

Parameters

e id (string) - The identifier to associate with this reaction

* name (string)— A human readable name for the reaction

* subsystem (string)— Subsystem where the reaction is meant to occur

* lower_bound (f1oat) - The lower flux bound

* upper_bound (f1oat) - The upper flux bound

__radd

_set_id_with_model (self, value)

property reverse_id (self)
Generate the id of reverse_variable from the reaction’s id.

96

Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

cobra Documentation, Release 0.18.1

property flux_expression (self)
Forward flux expression

Returns The expression representing the the forward flux (if associated with model), oth-
erwise None. Representing the net flux if model.reversible_encoding == ‘unsplit’ or
None if reaction is not associated with a model

Return type sympy expression

property forward variable (self)
An optlang variable representing the forward flux

Returns An optlang variable for the forward flux or None if reaction is not associated
with a model.

Return type optlang.interface.Variable

property reverse_variable (self)
An optlang variable representing the reverse flux

Returns An optlang variable for the reverse flux or None if reaction is not associated with
a model.

Return type optlang.interface.Variable

property objective_ coefficient (self)
Get the coefficient for this reaction in a linear objective (float)

Assuming that the objective of the associated model is summation of fluxes from a set of reactions,
the coefficient for each reaction can be obtained individually using this property. A more general way
is to use the model.objective property directly.

__copy___(self)
__deepcopy___(self, memo)
static _check_bounds (/b, ub)
update_variable_bounds (self)

property lower_bound (self)
Get or set the lower bound

Setting the lower bound (float) will also adjust the associated optlang variables associated with the
reaction. Infeasible combinations, such as a lower bound higher than the current upper bound will
update the other bound.

When using a HistoryManager context, this attribute can be set temporarily, reversed when the exiting
the context.

property upper_bound (self)
Get or set the upper bound

Setting the upper bound (float) will also adjust the associated optlang variables associated with the
reaction. Infeasible combinations, such as a upper bound lower than the current lower bound will
update the other bound.

When using a HistoryManager context, this attribute can be set temporarily, reversed when the exiting
the context.

property bounds (self)
Get or set the bounds directly from a tuple

Convenience method for setting upper and lower bounds in one line using a tuple of lower and upper
bound. Invalid bounds will raise an AssertionError.

When using a HistoryManager context, this attribute can be set temporarily, reversed when the exiting
the context.

17.1. cobra 97

cobra Documentation, Release 0.18.1

property flux (self)

The flux value in the most recent solution.

Flux is the primal value of the corresponding variable in the model.

Warning:
* Accessing reaction fluxes through a Solution object is the safer, preferred, and only guaran-

teed to be correct way. You can see how to do so easily in the examples.

» Reaction flux is retrieved from the currently defined self._model.solver. The solver status is
checked but there are no guarantees that the current solver state is the one you are looking
for.

* If you modify the underlying model after an optimization, you will retrieve the old opti-
mization values.

Raises

* RuntimeError — If the underlying model was never optimized beforehand or
the reaction is not part of a model.

* OptimizationError — If the solver status is anything other than ‘optimal’.

e AssertionError — If the flux value is not within the bounds.

Examples

>>> import cobra.test

>>> model = cobra.test.create_test_model ("textbook™)
>>> solution = model.optimize ()

>>> model.reactions.PFK.flux

7.477381962160283

>>> solution.fluxes.PFK

7.4773819621602833

property reduced_cost (self)

The reduced cost in the most recent solution.

Reduced cost is the dual value of the corresponding variable in the model.

Warning:
» Accessing reduced costs through a Solution object is the safer, preferred, and only guaran-

teed to be correct way. You can see how to do so easily in the examples.

* Reduced cost is retrieved from the currently defined self._model.solver. The solver status is
checked but there are no guarantees that the current solver state is the one you are looking
for.

* If you modify the underlying model after an optimization, you will retrieve the old opti-
mization values.

Raises

* RuntimeError — If the underlying model was never optimized beforehand or
the reaction is not part of a model.

* OptimizationError — If the solver status is anything other than ‘optimal’.

98

Chapter 17. API Reference

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/exceptions.html#RuntimeError

cobra Documentation, Release 0.18.1

Examples

>>> import cobra.test

>>> model = cobra.test.create_test_model ("textbook™)
>>> solution = model.optimize ()

>>> model.reactions.PFK.reduced_cost
-8.673617379884035e-18

>>> solution.reduced_costs.PFK
-8.6736173798840355e~-18

property metabolites (self)
property genes (self)
property gene_reaction_rule (self)

property gene_name_reaction_rule (self)
Display gene_reaction_rule with names intead.

Do NOT use this string for computation. It is intended to give a representation of the rule using more
familiar gene names instead of the often cryptic ids.

property functional (self)
All required enzymes for reaction are functional.

Returns True if the gene-protein-reaction (GPR) rule is fulfilled for this reaction, or if
reaction is not associated to a model, otherwise False.

Return type bool

property x (self)
The flux through the reaction in the most recent solution.

Flux values are computed from the primal values of the variables in the solution.

property vy (self)
The reduced cost of the reaction in the most recent solution.

Reduced costs are computed from the dual values of the variables in the solution.

property reversibility (self)
Whether the reaction can proceed in both directions (reversible)

This is computed from the current upper and lower bounds.

property boundary (self)
Whether or not this reaction is an exchange reaction.

Returns True if the reaction has either no products or reactants.

property model (self)
returns the model the reaction is a part of

_update_awareness (self)
Make sure all metabolites and genes that are associated with this reaction are aware of it.

remove_from_model (self, remove_orphans=False)
Removes the reaction from a model.

This removes all associations between a reaction the associated model, metabolites and genes.
The change is reverted upon exit when using the model as a context.

Parameters remove_orphans (bool) — Remove orphaned genes and metabolites
from the model as well

delete (self, remove_orphans=False)
Removes the reaction from a model.

This removes all associations between a reaction the associated model, metabolites and genes.

17.1. cobra 99

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

The change is reverted upon exit when using the model as a context.
Deprecated, use reaction.remove_from_model instead.

Parameters remove_orphans (bool) — Remove orphaned genes and metabolites
from the model as well

__setstate___ (self, state)

Probably not necessary to set _model as the cobra.Model that contains self sets the _model attribute
for all metabolites and genes in the reaction.

However, to increase performance speed we do want to let the metabolite and gene know that they are
employed in this reaction

copy (self)
Copy a reaction

The referenced metabolites and genes are also copied.

__add___ (self, other)
Add two reactions

The stoichiometry will be the combined stoichiometry of the two reactions, and the gene reaction rule
will be both rules combined by an and. All other attributes (i.e. reaction bounds) will match those of
the first reaction

__iadd__ (self, other)
__sub___(self, other)
__isub__ (self, other)

__imul__ (self, coefficient)
Scale coefficients in a reaction by a given value

E.g. A -> B becomes 2A -> 2B.
If coefficient is less than zero, the reaction is reversed and the bounds are swapped.
__mul__ (self, coefficient)

property reactants (self)
Return a list of reactants for the reaction.

property products (self)
Return a list of products for the reaction

get_coefficient (self, metabolite_id)
Return the stoichiometric coefficient of a metabolite.

Parameters metabolite_id (str or cobra.Metabolite)-

get_coefficients (self, metabolite_ids)
Return the stoichiometric coefficients for a list of metabolites.

Parameters metabolite_ids (iterable) - Containing str or co-
bra.Metabolite™"s.

add_metabolites (self, metabolites_to_add, combine=True, reversibly=True)
Add metabolites and stoichiometric coefficients to the reaction. If the final coefficient for a metabolite
is O then it is removed from the reaction.

The change is reverted upon exit when using the model as a context.
Parameters

* metabolites_to_add (dict) — Dictionary with metabolite objects or
metabolite identifiers as keys and coefficients as values. If keys are strings (name
of a metabolite) the reaction must already be part of a model and a metabolite
with the given name must exist in the model.

100 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

cobra Documentation, Release 0.18.1

* combine (bool) — Describes behavior a metabolite already exists in the reac-
tion. True causes the coefficients to be added. False causes the coefficient to be
replaced.

* reversibly (bool) — Whether to add the change to the context to make the
change reversibly or not (primarily intended for internal use).

subtract_metabolites (self, metabolites, combine=True, reversibly=True)
Subtract metabolites from a reaction.

That means add the metabolites with -1*coefficient. If the final coefficient for a metabolite is O then
the metabolite is removed from the reaction.

Notes

* A final coefficient < O implies a reactant.

* The change is reverted upon exit when using the model as a context.

Parameters

* metabolites (dict)— Dictionary where the keys are of class Metabolite and
the values are the coefficients. These metabolites will be added to the reaction.

* combine (bool) — Describes behavior a metabolite already exists in the reac-
tion. True causes the coefficients to be added. False causes the coefficient to be
replaced.

* reversibly (bool) — Whether to add the change to the context to make the
change reversibly or not (primarily intended for internal use).
property reaction (self)
Human readable reaction string

build reaction_string (self, use_metabolite_names=False)
Generate a human readable reaction string

check_mass_balance (self)
Compute mass and charge balance for the reaction

returns a dict of {element: amount} for unbalanced elements. “charge” is treated as an element in this
dict This should be empty for balanced reactions.

property compartments (self)
lists compartments the metabolites are in

get_compartments (self)
lists compartments the metabolites are in

_associate_gene (self, cobra_gene)
Associates a cobra.Gene object with a cobra.Reaction.

Parameters cobra_gene (cobra.core.Gene.Gene) —

_dissociate_gene (self, cobra_gene)
Dissociates a cobra.Gene object with a cobra.Reaction.

Parameters cobra_gene (cobra.core.Gene.Gene) —

knock_out (self)
Knockout reaction by setting its bounds to zero.

build_reaction_from_string (self, reaction_str, verbose=True, fwd_arrow=None,

rev_arrow=None, reversible_arrow=None, term_split="+")
Builds reaction from reaction equation reaction_str using parser

17.1. cobra 101

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

Takes a string and using the specifications supplied in the optional arguments infers a set of metabo-
lites, metabolite compartments and stoichiometries for the reaction. It also infers the reversibility of
the reaction from the reaction arrow.

Changes to the associated model are reverted upon exit when using the model as a context.
Parameters
e reaction_str (string) — a string containing a reaction formula (equation)
* verbose (boo1l) - setting verbosity of function
e fwd_arrow (re.compile) — for forward irreversible reaction arrows
e rev_arrow (re.compile)— for backward irreversible reaction arrows
* reversible_arrow (re.compile) - for reversible reaction arrows
* term_split (string) - dividing individual metabolite entries

summary (self, solution=None, threshold=0.01, fva=None, names=False,

float_format="{:.3g}'" format)
Create a summary of the producing and consuming fluxes of the reaction.

Parameters

* solution (cobra.Solution, optional)— A previous model solution
to use for generating the summary. If None, the summary method will resolve
the model. Note that the solution object must match the model, i.e., changes to
the model such as changed bounds, added or removed reactions are not taken into
account by this method (default None).

e threshold (float, optional) — Threshold below which fluxes are not
reported. May not be smaller than the model tolerance (default 0.01).

e fva (pandas.DataFrame or float, optional)— Whether or not to
include flux variability analysis in the output. If given, fva should either be a
previous FVA solution matching the model or a float between 0 and 1 representing
the fraction of the optimum objective to be searched (default None).

e names (bool, optional)—- Emitreaction and metabolite names rather than
identifiers (default False).

e float_format (callable, optional)-Format string for floats (default
'{:3G}'.format).

Returns
Return type cobra.ReactionSummary
See also:
Metabolite.summary (), Model.summary ()

__str__ (self)
Return str(self).

_repr_html_ (self)

102

Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

cobra.core.singleton

Define the singleton meta class.

Module Contents

Classes

Singleton Implementation of the singleton pattern as a meta
class.

class cobra.core.singleton.Singleton
Bases: type

Implementation of the singleton pattern as a meta class.
_instances

__call__ (cls, *args, **kwargs)
Override an inheriting class’ call.

cobra.core.solution

Provide unified interfaces to optimization solutions.

Module Contents

Classes
Solution A unified interface to a cobra.Model optimization so-
lution.
LegacySolution Legacy support for an interface to a cobra.Model op-
timization solution.
Functions

get_solution(model, reactions=None, metabo- Generate a solution representation of the current
lites=None, raise_error=False) solver state.

class cobra.core.solution.Solution (objective_value, status, fluxes, reduced_costs=None,

shadow_prices=None, **kwargs)
Bases: object

A unified interface to a cobra.Model optimization solution.

17.1. cobra 103

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#object

cobra Documentation, Release 0.18.1

Notes
Solution is meant to be constructed by get_solution please look at that function to fully understand the
Solution class.

objective_value
The (optimal) value for the objective function.

Type float
status
The solver status related to the solution.
Type str
fluxes

Contains the reaction fluxes (primal values of variables).
Type pandas.Series

reduced costs
Contains reaction reduced costs (dual values of variables).

Type pandas.Series

shadow_prices
Contains metabolite shadow prices (dual values of constraints).

Type pandas.Series
get_primal by id

__repr__ (self)
String representation of the solution instance.

_repr_html_ (self)

__getitem__ (self, reaction_id)
Return the flux of a reaction.

Parameters reaction (str)— A model reaction ID.

to_frame (self)
Return the fluxes and reduced costs as a data frame

class cobra.core.solution.LegacySolution (f, x=None, x_dict=None, y=None,
y_dict=None, solver=None, the_time=0,
status="'NA’", **kwargs)
Bases: object

Legacy support for an interface to a cobra.Model optimization solution.

£
The objective value
Type float
solver
A string indicating which solver package was used.
Type str
X
List or Array of the fluxes (primal values).
Type iterable
x_dict
A dictionary of reaction IDs that maps to the respective primal values.
Type dict

104 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

cobra Documentation, Release 0.18.1

Y List or Array of the dual values.
Type iterable
y_dict
A dictionary of reaction IDs that maps to the respective dual values.
Type dict

Warning: The LegacySolution class and its interface is deprecated.

__repr__ (self)
String representation of the solution instance.

__getitem__ (self, reaction_id)
Return the flux of a reaction.

Parameters reaction_id (str)— A reaction ID.

dress_results (self, model)
Method could be intended as a decorator.

Warning: deprecated

cobra.core.solution.get_solution (model, reactions=None, metabolites=None,

raise_error=False)
Generate a solution representation of the current solver state.

Parameters
* model (cobra.Model) - The model whose reactions to retrieve values for.

* reactions (1ist, optional)— An iterable of cobra.Reaction objects. Uses
model.reactions by default.

* metabolites (list, optional) — An iterable of cobra.Metabolite objects.
Uses model.metabolites by default.

* raise_error (bool) — If true, raise an OptimizationError if solver status is not
optimal.

Returns

Return type cobra.Solution

Note: This is only intended for the optlang solver interfaces and not the legacy solvers.

cobra.core.species

Module Contents

Classes

Species Species is a class for holding information regarding

class cobra.core.species.Species (id=None, name=None)
Bases: cobra.core.object.Object

17.1. cobra 105

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

Species is a class for holding information regarding a chemical Species

Parameters

* id (string)— An identifier for the chemical species

* name (string)— A human readable name.

property reactions (self)

__getstate__ (self)

Remove the references to container reactions when serializing to avoid problems associated with

recursion.

copy (self)

When copying a reaction, it is necessary to deepcopy the components so the list references aren’t

carried over.

Additionally, a copy of a reaction is no longer in a cobra.Model.

This should be fixed with self.__deepcopy__ if possible

property model (self)

Package Contents

Classes
Configuration Define the configuration to be singleton based.
DictList A combined dict and list
Gene A Gene in a cobra model
Metabolite Metabolite is a class for holding information regard-

ing

Model Class representation for a cobra model
Object Defines common behavior of object in cobra.core
Reaction Reaction is a class for holding information regarding
Group Manage groups via this implementation of the SBML

group specification.

Solution

A unified interface to a cobra.Model optimization so-
lution.

LegacySolution Legacy support for an interface to a cobra.Model op-
timization solution.
Species Species is a class for holding information regarding

MetaboliteSummary

Define the metabolite summary.

Summary

Define the abstract base summary.

Functions

get_solution(model, reactions=None, metabo-
lites=None, raise_error=False)

Generate a solution representation of the current
solver state.

class cobra.core.Configuration
Bases: six.with_metaclass ()

Define the configuration to be singleton based.

class cobra.core.DictList (*args)
Bases: 1ist

106

Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#list

cobra Documentation, Release 0.18.1

A combined dict and list

This object behaves like a list, but has the O(1) speed benefits of a dict when looking up elements by their
id.

has_id (self, id)

_check (self, id)
make sure duplicate id’s are not added. This function is called before adding in elements.

_generate_index (self)
rebuild the _dict index

get_by_id (self, id)
return the element with a matching id

list_attr (self, attribute)
return a list of the given attribute for every object

get_by_any (self, iterable)
Get a list of members using several different ways of indexing

Parameters iterable (list (if not, turned into single element
l1ist)) — list where each element is either int (referring to an index in in this
DictList), string (a id of a member in this DictList) or member of this DictList for
pass-through

Returns a list of members
Return type list

query (self, search_function, attribute=None)
Query the list

Parameters

¢ search_function (a string, regular expression or
function) — Used to find the matching elements in the list. - a regular
expression (possibly compiled), in which case the given attribute of the object
should match the regular expression. - a function which takes one argument and
returns True for desired values

* attribute (string or None) - the name attribute of the object to passed
as argument to the search_function. If this is None, the object itself is used.

Returns a new list of objects which match the query

Return type DictList

Examples

>>> import cobra.test

>>> model = cobra.test.create_test_model ('textbook")
>>> model.reactions.query (lambda x: x.boundary)

>>> import re

>>> regex = re.compile('”g', flags=re.IGNORECASE)
>>> model .metabolites.query (regex, attribute='name')

_replace_on_id (self, new_object)
Replace an object by another with the same id.

append (self, object)
append object to end

union (self, iterable)
adds elements with id’s not already in the model

17.1. cobra 107

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None

cobra Documentation, Release 0.18.1

extend (self, iterable)
extend list by appending elements from the iterable

_extend_nocheck (self, iterable)
extends without checking for uniqueness

This function should only be used internally by DictList when it can guarantee elements are already
unique (as in when coming from self or other DictList). It will be faster because it skips these checks.

__sub___ (self, other)
X.__sub__(y)<==>Xx-y

Parameters other (iterable) — other must contain only unique id’s present in the
list
__isub__ (self, other)

X.__sub__(y) <==>Xx-=y

Parameters other (iterable) — other must contain only unique id’s present in the
list
__add___ (self, other)
X.__add__ (y)<==>x+y

Parameters other (iterable) — other must contain only unique id’s which do not
intersect with self

__iadd___ (self, other)
X.__iadd__(y) <==>x+=y

Parameters other (iterable) — other must contain only unique id’s whcih do not
intersect with self

__reduce__ (self)
Helper for pickle.

__getstate_ (self)
gets internal state

This is only provided for backwards compatibility so older versions of cobrapy can load pickles
generated with cobrapy. In reality, the “_dict” state is ignored when loading a pickle

__setstate__ (self, state)
sets internal state

Ignore the passed in state and recalculate it. This is only for compatibility with older pickles which
did not correctly specify the initialization class

index (self, id, *args)
Determine the position in the list

id: A string or a Object

__contains___ (self, object)
DictList.__contains__(object) <==> object in DictList

object: str or ObJject
__copy___(self)

insert (self, index, object)
insert object before index

pop (self, *args)
remove and return item at index (default last).

add (self, x)
Opposite of remove. Mirrors set.add

108 Chapter 17. API Reference

cobra Documentation, Release 0.18.1

remove (self, x)

Warning: Internal use only

reverse (self)
reverse IN PLACE

sort (self, cmp=None, key=None, reverse=False)
stable sort IN PLACE

cmp(x, y) ->-1,0, 1

__getitem__ (self, i)
X.__getitem__(y) <==> x[y]

__setitem__ (self,i,y)
Set selffkey] to value.

__delitem__ (self, index)
Delete self[key].

__getslice__ (self,i,))
__setslice__ (self,i,j,y)
_ _delslice__ (self,i,])
__getattr__ (self, attr)

__dir__ (self)
Default dir() implementation.

class cobra.core.Gene (id=None, name=", functional=True)
Bases: cobra.core.species.Species

A Gene in a cobra model
Parameters
e id (string) - The identifier to associate the gene with
* name (string)— A longer human readable name for the gene

e functional (bool) — Indicates whether the gene is functional. If it is not func-
tional then it cannot be used in an enzyme complex nor can its products be used.

property functional (self)
A flag indicating if the gene is functional.

Changing the flag is reverted upon exit if executed within the model as context.

knock_out (self)
Knockout gene by marking it as non-functional and setting all associated reactions bounds to zero.

The change is reverted upon exit if executed within the model as context.

remove_from_model (self, model=None, make_dependent_reactions_nonfunctional=True)
Removes the association

Parameters
* model (cobra model)— The model to remove the gene from

* make_dependent_reactions_nonfunctional (bool) — If True then
replace the gene with ‘False’ in the gene association, else replace the gene with
“True’

17.1. cobra 109

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

Deprecated since version 0.4: Use cobra.manipulation.delete_model_genes to simulate knockouts
and cobra.manipulation.remove_genes to remove genes from the model.

_repr_html_ (self)

class cobra.core.Metabolite (id=None, formula=None, name=", charge=None, compart-

ment=None)
Bases: cobra.core.species.Species

Metabolite is a class for holding information regarding a metabolite in a cobra.Reaction object.
Parameters

e id (st r) - the identifier to associate with the metabolite

e formula (str)— Chemical formula (e.g. H20)

* name (st r)— A human readable name.

* charge (float) — The charge number of the metabolite

* compartment (str or None)-— Compartment of the metabolite.
_set_id_with_model (self, value)

property constraint (self)
Get the constraints associated with this metabolite from the solve

Returns the optlang constraint for this metabolite
Return type optlang.<interface>.Constraint

property elements (self)
Dictionary of elements as keys and their count in the metabolite as integer. When set, the formula
property is update accordingly

property formula_weight (self)
Calculate the formula weight

property vy (self)
The shadow price for the metabolite in the most recent solution

Shadow prices are computed from the dual values of the bounds in the solution.

property shadow_price (self)
The shadow price in the most recent solution.

Shadow price is the dual value of the corresponding constraint in the model.

Warning:
* Accessing shadow prices through a Solution object is the safer, preferred, and only guaran-

teed to be correct way. You can see how to do so easily in the examples.

» Shadow price is retrieved from the currently defined self._model.solver. The solver status is
checked but there are no guarantees that the current solver state is the one you are looking
for.

* If you modify the underlying model after an optimization, you will retrieve the old opti-
mization values.

Raises

* RuntimeError — If the underlying model was never optimized beforehand or
the metabolite is not part of a model.

* OptimizationError — If the solver status is anything other than ‘optimal’.

110 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#RuntimeError

cobra Documentation, Release 0.18.1

Examples

>>> import cobra

>>> import cobra.test

>>> model = cobra.test.create_test_model ("textbook™)
>>> solution = model.optimize ()

>>> model .metabolites.glc__D_e.shadow_price
-0.09166474637510488

>>> solution.shadow_prices.glc__D_e
-0.091664746375104883

remove_from_model (self, destructive=False)
Removes the association from self.model

The change is reverted upon exit when using the model as a context.

Parameters destructive (bool) — If False then the metabolite is removed from
all associated reactions. If True then all associated reactions are removed from the
Model.

summary (self, solution=None, threshold=0.01, fva=None, names=False,

float_format="{:.3g}'" format)
Create a summary of the producing and consuming fluxes.

This method requires the model for which this metabolite is a part to be solved.
Parameters

e solution (cobra.Solution, optional)— A previous model solution
to use for generating the summary. If None, the summary method will resolve
the model. Note that the solution object must match the model, i.e., changes to
the model such as changed bounds, added or removed reactions are not taken into
account by this method (default None).

e threshold (float, optional) — Threshold below which fluxes are not
reported. May not be smaller than the model tolerance (default 0.01).

* fva (pandas.DataFrame or float, optional)— Whether or not to
include flux variability analysis in the output. If given, fva should either be a
previous FVA solution matching the model or a float between 0 and 1 representing
the fraction of the optimum objective to be searched (default None).

* names (bool, optional)- Emitreaction and metabolite names rather than
identifiers (default False).

* float_format (callable, optional)-—Format string for floats (default
'{:3G}'.format).

Returns
Return type cobra.MetaboliteSummary
See also:
Reaction.summary (), Model.summary ()
_repr_html_ (self)

class cobra.core.Model (id or_model=None, name=None)
Bases: cobra.core.object.Object

Class representation for a cobra model
Parameters

* id_or_model (Model, string) — Either an existing Model object in which
case a new model object is instantiated with the same properties as the original model,
or an identifier to associate with the model as a string.

17.1. cobra 111

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

¢ name (string)- Human readable name for the model

reactions
A DictList where the key is the reaction identifier and the value a Reaction

Type DictList

metabolites
A DictList where the key is the metabolite identifier and the value a Metabolite

Type DictList

genes
A DictList where the key is the gene identifier and the value a Gene

Type DictList

groups
A DictList where the key is the group identifier and the value a Group

Type DictList

solution
The last obtained solution from optimizing the model.

Type Solution

__setstate__ (self, state)
Make sure all cobra.Objects in the model point to the model.

__getstate__ (self)
Get state for serialization.

Ensures that the context stack is cleared prior to serialization, since partial functions cannot be pickled
reliably.

property solver (self)
Get or set the attached solver instance.

The associated the solver object, which manages the interaction with the associated solver, e.g. glpk.

This property is useful for accessing the optimization problem directly and to define additional non-
metabolic constraints.

Examples

>>> import cobra.test

>>> model = cobra.test.create_test_model ("textbook™)

>>> new = model.problem.Constraint (model.objective.expression,
>>> 1b=0.99)

>>> model.solver.add (new)

property tolerance (self)
property description (self)

get_metabolite_ compartments (self)
Return all metabolites’ compartments.

property compartments (self)
property medium (self)

__add___ (self, other_model)
Add the content of another model to this model (+).

The model is copied as a new object, with a new model identifier, and copies of all the reactions in
the other model are added to this model. The objective is the sum of the objective expressions for the
two models.

112 Chapter 17. API Reference

cobra Documentation, Release 0.18.1

__iadd___ (self, other_model)
Incrementally add the content of another model to this model (+=).

Copies of all the reactions in the other model are added to this model. The objective is the sum of the
objective expressions for the two models.

copy (self)
Provides a partial ‘deepcopy’ of the Model. All of the Metabolite, Gene, and Reaction objects are
created anew but in a faster fashion than deepcopy

add_metabolites (self, metabolite_list)
Will add a list of metabolites to the model object and add new constraints accordingly.

The change is reverted upon exit when using the model as a context.
Parameters metabolite_list (A list of cobra.core.Metabolite objects) —

remove_metabolites (self, metabolite_list, destructive=False)
Remove a list of metabolites from the the object.

The change is reverted upon exit when using the model as a context.
Parameters

* metabolite_list (list) — A list with cobra.Metabolite objects as ele-
ments.

¢ destructive (bool) — If False then the metabolite is removed from all as-
sociated reactions. If True then all associated reactions are removed from the
Model.

add_reaction (self, reaction)
Will add a cobra.Reaction object to the model, if reaction.id is not in self.reactions.

Parameters
e reaction (cobra.Reaction) - The reaction to add

e (0.6) Use ~cobra.Model.add reactions instead
(Deprecated) —

add_boundary (self, metabolite, type='exchange', reaction_id=None, Ib=None, ub=None,

sbo_term=None)
Add a boundary reaction for a given metabolite.

There are three different types of pre-defined boundary reactions: exchange, demand, and sink reac-
tions. An exchange reaction is a reversible, unbalanced reaction that adds to or removes an extracellu-
lar metabolite from the extracellular compartment. A demand reaction is an irreversible reaction that
consumes an intracellular metabolite. A sink is similar to an exchange but specifically for intracellular
metabolites.

If you set the reaction type to something else, you must specify the desired identifier of the created
reaction along with its upper and lower bound. The name will be given by the metabolite name and
the given fype.

Parameters

* metabolite (cobra.Metabolite)— Any given metabolite. The compart-
ment is not checked but you are encouraged to stick to the definition of exchanges
and sinks.

* type (str, {"exchange", "demand", "sink"})— Using one of the
pre-defined reaction types is easiest. If you want to create your own kind of
boundary reaction choose any other string, e.g., ‘my-boundary’.

e reaction_id (str, optional) - The ID of the resulting reaction. This
takes precedence over the auto-generated identifiers but beware that it might make
boundary reactions harder to identify afterwards when using model.boundary or
specifically model.exchanges etc.

17.1. cobra 113

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

cobra Documentation, Release 0.18.1

* 1b(float, optional)-The lower bound of the resulting reaction.
e ub (float, optional)- The upper bound of the resulting reaction.

* sbo_term (str, optional)— A correct SBO term is set for the available
types. If a custom type is chosen, a suitable SBO term should also be set.

Returns The created boundary reaction.

Return type cobra.Reaction

Examples

>>> import cobra.test

>>> model = cobra.test.create_test_model ("textbook™)

>>> demand = model.add_boundary (model.metabolites.atp_c, type="demand")
>>> demand.id

'DM_atp_c'

>>> demand.name

'ATP demand'

>>> demand.bounds

(0, 1000.0)

>>> demand.build_reaction_string/()

'atp_c ——> !

add_reactions (self, reaction_list)
Add reactions to the model.

Reactions with identifiers identical to a reaction already in the model are ignored.
The change is reverted upon exit when using the model as a context.
Parameters reaction_list (11ist)— A list of cobra.Reaction objects

remove_reactions (self, reactions, remove_orphans=~False)
Remove reactions from the model.

The change is reverted upon exit when using the model as a context.
Parameters

e reactions (1ist) — A list with reactions (cobra.Reaction), or their id’s, to
remove

* remove_orphans (bool)-Remove orphaned genes and metabolites from the
model as well

add_groups (self, group_list)
Add groups to the model.

Groups with identifiers identical to a group already in the model are ignored.

If any group contains members that are not in the model, these members are added to the model as
well. Only metabolites, reactions, and genes can have groups.

Parameters group_list (1ist)— A list of cobra.Group objects to add to the model.

remove_groups (self, group_list)
Remove groups from the model.

Members of each group are not removed from the model (i.e. metabolites, reactions, and genes in the
group stay in the model after any groups containing them are removed).

Parameters group_1list (1ist) — A list of cobra.Group objects to remove from the
model.

get_associated_groups (self, element)
Returns a list of groups that an element (reaction, metabolite, gene) is associated with.

114

Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

cobra Documentation, Release 0.18.1

Parameters element (cobra.Reaction, cobra.Metabolite, or cobra.Gene) —
Returns All groups that the provided object is a member of
Return type list of cobra.Group

add_cons_vars (self, what, **kwargs)
Add constraints and variables to the model’s mathematical problem.

Useful for variables and constraints that can not be expressed with reactions and simple lower and
upper bounds.

Additions are reversed upon exit if the model itself is used as context.

Parameters

* what (list or tuple of optlang variables or
constraints.)— The variables or constraints to add to the model. Must be of
class optlang.interface.Variable or optlang.interface.Constraint.

e xxkwargs (keyword arguments)— Passed to solver.add()

remove_cons_vars (self, what)
Remove variables and constraints from the model’s mathematical problem.

Remove variables and constraints that were added directly to the model’s underlying mathematical
problem. Removals are reversed upon exit if the model itself is used as context.

Parameters what (list or tuple of optlang variables or
constraints.) — The variables or constraints to add to the model. Must be
of class optlang.interface.Variable or optlang.interface. Constraint.

property problem (self)
The interface to the model’s underlying mathematical problem.

Solutions to cobra models are obtained by formulating a mathematical problem and solving it. Co-
brapy uses the optlang package to accomplish that and with this property you can get access to the
problem interface directly.

Returns The problem interface that defines methods for interacting with the problem and
associated solver directly.

Return type optlang.interface

property variables (self)
The mathematical variables in the cobra model.

In a cobra model, most variables are reactions. However, for specific use cases, it may also be useful

to have other types of variables. This property defines all variables currently associated with the
model’s problem.

Returns A container with all associated variables.
Return type optlang.container.Container

property constraints (self)
The constraints in the cobra model.

In a cobra model, most constraints are metabolites and their stoichiometries. However, for specific
use cases, it may also be useful to have other types of constraints. This property defines all constraints
currently associated with the model’s problem.

Returns A container with all associated constraints.
Return type optlang.container.Container

property boundary (self)
Boundary reactions in the model. Reactions that either have no substrate or product.

17.1. cobra 115

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

cobra Documentation, Release 0.18.1

property exchanges (self)
Exchange reactions in model. Reactions that exchange mass with the exterior. Uses annotations and
heuristics to exclude non-exchanges such as sink reactions.

property demands (self)
Demand reactions in model. Irreversible reactions that accumulate or consume a metabolite in the
inside of the model.

property sinks (self)
Sink reactions in model. Reversible reactions that accumulate or consume a metabolite in the inside
of the model.

_populate_solver (self, reaction_list, metabolite_list=None)
Populate attached solver with constraints and variables that model the provided reactions.

slim optimize (self, error_value=float('nan'), message=None)
Optimize model without creating a solution object.

Creating a full solution object implies fetching shadow prices and flux values for all reactions and
metabolites from the solver object. This necessarily takes some time and in cases where only one
or two values are of interest, it is recommended to instead use this function which does not create a
solution object returning only the value of the objective. Note however that the optimize() function
uses efficient means to fetch values so if you need fluxes/shadow prices for more than say 4 reac-
tions/metabolites, then the total speed increase of slim_optimize versus optimize is expected to be
small or even negative depending on how you fetch the values after optimization.

Parameters

* error_value (float, None) — The value to return if optimization failed
due to e.g. infeasibility. If None, raise OptimizationError if the optimization
fails.

* message (string) — Error message to use if the model optimization did not
succeed.

Returns The objective value.
Return type float

optimize (self, objective_sense=None, raise_error=False)
Optimize the model using flux balance analysis.

Parameters

* objective_sense ({None, 'maximize' 'minimize'},
optional) — Whether fluxes should be maximized or minimized. In
case of None, the previous direction is used.

* raise_error (bool)—

If true, raise an OptimizationError if solver status is not optimal.

Notes
Only the most commonly used parameters are presented here. Additional parameters for cobra.solvers
may be available and specified with the appropriate keyword argument.

repair (self, rebuild_index=True, rebuild_relationships=True)
Update all indexes and pointers in a model

Parameters

* rebuild_index (bool) — rebuild the indices kept in reactions, metabolites
and genes

* rebuild_relationships (bool) — reset all associations between genes,
metabolites, model and then re-add them.

116

Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

property objective (self)

Get or set the

solver objective

Before introduction of the optlang based problems, this function returned the objective reactions as a
list. With optlang, the objective is not limited a simple linear summation of individual reaction fluxes,
making that return value ambiguous. Henceforth, use cobra.util.solver.linear_reaction_coefficients to
get a dictionary of reactions with their linear coefficients (empty if there are none)

The set value can be dictionary (reactions as keys, linear coefficients as values), string (reaction iden-
tifier), int (reaction index), Reaction or problem.Objective or sympy expression directly interpreted

as objectives.

When using a HistoryManager context, this attribute can be set temporarily, reversed when the exiting

the context.

property objective_direction (self)
Get or set the objective direction.

When using a HistoryManager context, this attribute can be set temporarily, reversed when exiting

the context.

summary (self,

solution=None, threshold=0.01, fva=None, names=False,

float_format="{:.3g}" format)
Create a summary of the exchange fluxes of the model.

Parameters

Returns

solution (cobra.Solution, optional)— A previous model solution
to use for generating the summary. If None, the summary method will resolve
the model. Note that the solution object must match the model, i.e., changes to
the model such as changed bounds, added or removed reactions are not taken into
account by this method (default None).

threshold (float, optional) — Threshold below which fluxes are not
reported. May not be smaller than the model tolerance (default 0.01).

fva (pandas.DataFrame or float, optional)— Whether or not to
include flux variability analysis in the output. If given, fva should either be a
previous FVA solution matching the model or a float between 0 and 1 representing
the fraction of the optimum objective to be searched (default None).

names (bool, optional)- Emitreaction and metabolite names rather than
identifiers (default False).

float_format (callable, optional)- Format string for floats (default
'{:3G}'.format).

Return type cobra.ModelSummary

See also:

Reaction.summary (), Metabolite.summary ()

__enter___ (self)

Record all future changes to the model, undoing them when a call to __exit__ is received

__exit__ (self, type, value, traceback)
Pop the top context manager and trigger the undo functions

merge (self, right, prefix_existing=None, inplace=True, objective="left")
Merge two models to create a model with the reactions from both models.

Custom constraints and variables from right models are also copied to left model, however note that,
constraints and variables are assumed to be the same if they have the same name.

right [cobra.Model] The model to add reactions from

17.1. cobra

117

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

prefix_existing [string] Prefix the reaction identifier in the right that already exist in the left model
with this string.

inplace [bool] Add reactions from right directly to left model object. Otherwise, create a new model
leaving the left model untouched. When done within the model as context, changes to the
models are reverted upon exit.

objective [string] One of ‘left’, ‘right’ or ‘sum’ for setting the objective of the resulting model to that
of the corresponding model or the sum of both.

_repr_html_ (self)

class cobra.core.Object (id=None, name="")
Bases: object

Defines common behavior of object in cobra.core
property id (self)

_set_id with_model (self, value)
property annotation (self)

__getstate__ (self)
To prevent excessive replication during deepcopy.

__repr__ (self)
Return repr(self).

__str___ (self)
Return str(self).

class cobra.core.Reaction (id=None, name=", subsystem=", lower_bound=0.0, up-

per_bound=None)
Bases: cobra.core.object.Object

Reaction is a class for holding information regarding a biochemical reaction in a cobra.Model object.

Reactions are by default irreversible with bounds (0.0, cobra.Configuration().upper_bound) if no bounds
are provided on creation. To create an irreversible reaction use lower_bound=None, resulting in reaction
bounds of (cobra.Configuration().lower_bound, cobra.Configuration().upper_bound).

Parameters

¢ id (string) - The identifier to associate with this reaction
* name (string)— A human readable name for the reaction
* subsystem (string)— Subsystem where the reaction is meant to occur
¢ lower_bound (f1oat) - The lower flux bound
* upper_bound (f1oat) — The upper flux bound

__radd_

_set_id_with_model (self, value)

property reverse_id (self)
Generate the id of reverse_variable from the reaction’s id.

property flux expression (self)
Forward flux expression

Returns The expression representing the the forward flux (if associated with model), oth-
erwise None. Representing the net flux if model.reversible_encoding == ‘unsplit’ or
None if reaction is not associated with a model

Return type sympy expression

property forward variable (self)
An optlang variable representing the forward flux

118 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

cobra Documentation, Release 0.18.1

Returns An optlang variable for the forward flux or None if reaction is not associated
with a model.

Return type optlang.interface.Variable

property reverse_variable (self)
An optlang variable representing the reverse flux

Returns An optlang variable for the reverse flux or None if reaction is not associated with
a model.

Return type optlang.interface.Variable

property objective_coefficient (self)
Get the coefficient for this reaction in a linear objective (float)

Assuming that the objective of the associated model is summation of fluxes from a set of reactions,
the coefficient for each reaction can be obtained individually using this property. A more general way
is to use the model.objective property directly.

__copy___(self)
__deepcopy___(self, memo)
static _check _bounds (/b, ub)
update_variable_bounds (self)

property lower_bound (self)
Get or set the lower bound

Setting the lower bound (float) will also adjust the associated optlang variables associated with the
reaction. Infeasible combinations, such as a lower bound higher than the current upper bound will
update the other bound.

When using a HistoryManager context, this attribute can be set temporarily, reversed when the exiting
the context.

property upper_bound (self)
Get or set the upper bound

Setting the upper bound (float) will also adjust the associated optlang variables associated with the
reaction. Infeasible combinations, such as a upper bound lower than the current lower bound will
update the other bound.

When using a HistoryManager context, this attribute can be set temporarily, reversed when the exiting
the context.

property bounds (self)
Get or set the bounds directly from a tuple

Convenience method for setting upper and lower bounds in one line using a tuple of lower and upper
bound. Invalid bounds will raise an AssertionError.

When using a HistoryManager context, this attribute can be set temporarily, reversed when the exiting
the context.

property flux (self)
The flux value in the most recent solution.

Flux is the primal value of the corresponding variable in the model.

Warning:

* Accessing reaction fluxes through a Solution object is the safer, preferred, and only guaran-
teed to be correct way. You can see how to do so easily in the examples.

17.1. cobra 119

cobra Documentation, Release 0.18.1

* Reaction flux is retrieved from the currently defined self._model.solver. The solver status is
checked but there are no guarantees that the current solver state is the one you are looking
for.

* If you modify the underlying model after an optimization, you will retrieve the old opti-
mization values.

Raises

* RuntimeError — If the underlying model was never optimized beforehand or
the reaction is not part of a model.

* OptimizationError — If the solver status is anything other than ‘optimal’.

e AssertionError — If the flux value is not within the bounds.

Examples

>>> import cobra.test

>>> model = cobra.test.create_test_model ("textbook™)
>>> solution = model.optimize ()

>>> model.reactions.PFK.flux

7.477381962160283

>>> solution.fluxes.PFK

7.4773819621602833

property reduced_cost (self)
The reduced cost in the most recent solution.

Reduced cost is the dual value of the corresponding variable in the model.

Warning:
» Accessing reduced costs through a Solution object is the safer, preferred, and only guaran-

teed to be correct way. You can see how to do so easily in the examples.

* Reduced cost is retrieved from the currently defined self._model.solver. The solver status is
checked but there are no guarantees that the current solver state is the one you are looking
for.

* If you modify the underlying model after an optimization, you will retrieve the old opti-
mization values.

Raises

* RuntimeError — If the underlying model was never optimized beforehand or
the reaction is not part of a model.

* OptimizationError — If the solver status is anything other than ‘optimal’.

120 Chapter 17. API Reference

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/exceptions.html#RuntimeError

cobra Documentation, Release 0.18.1

Examples

>>> import cobra.test

>>> model = cobra.test.create_test_model ("textbook™)
>>> solution = model.optimize ()

>>> model.reactions.PFK.reduced_cost
-8.673617379884035e-18

>>> solution.reduced_costs.PFK
-8.6736173798840355e~-18

property metabolites (self)
property genes (self)
property gene_reaction_rule (self)

property gene_name_reaction_rule (self)
Display gene_reaction_rule with names intead.

Do NOT use this string for computation. It is intended to give a representation of the rule using more
familiar gene names instead of the often cryptic ids.

property functional (self)
All required enzymes for reaction are functional.

Returns True if the gene-protein-reaction (GPR) rule is fulfilled for this reaction, or if
reaction is not associated to a model, otherwise False.

Return type bool

property x (self)
The flux through the reaction in the most recent solution.

Flux values are computed from the primal values of the variables in the solution.

property vy (self)
The reduced cost of the reaction in the most recent solution.

Reduced costs are computed from the dual values of the variables in the solution.

property reversibility (self)
Whether the reaction can proceed in both directions (reversible)

This is computed from the current upper and lower bounds.

property boundary (self)
Whether or not this reaction is an exchange reaction.

Returns True if the reaction has either no products or reactants.

property model (self)
returns the model the reaction is a part of

_update_awareness (self)
Make sure all metabolites and genes that are associated with this reaction are aware of it.

remove_from_model (self, remove_orphans=False)
Removes the reaction from a model.

This removes all associations between a reaction the associated model, metabolites and genes.
The change is reverted upon exit when using the model as a context.

Parameters remove_orphans (bool) — Remove orphaned genes and metabolites
from the model as well

delete (self, remove_orphans=False)
Removes the reaction from a model.

This removes all associations between a reaction the associated model, metabolites and genes.

17.1. cobra 121

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

The change is reverted upon exit when using the model as a context.
Deprecated, use reaction.remove_from_model instead.

Parameters remove_orphans (bool) — Remove orphaned genes and metabolites
from the model as well

__setstate___ (self, state)

Probably not necessary to set _model as the cobra.Model that contains self sets the _model attribute
for all metabolites and genes in the reaction.

However, to increase performance speed we do want to let the metabolite and gene know that they are
employed in this reaction

copy (self)
Copy a reaction

The referenced metabolites and genes are also copied.

__add___ (self, other)
Add two reactions

The stoichiometry will be the combined stoichiometry of the two reactions, and the gene reaction rule
will be both rules combined by an and. All other attributes (i.e. reaction bounds) will match those of
the first reaction

__iadd__ (self, other)
__sub___(self, other)
__isub__ (self, other)

__imul__ (self, coefficient)
Scale coefficients in a reaction by a given value

E.g. A -> B becomes 2A -> 2B.
If coefficient is less than zero, the reaction is reversed and the bounds are swapped.
__mul__ (self, coefficient)

property reactants (self)
Return a list of reactants for the reaction.

property products (self)
Return a list of products for the reaction

get_coefficient (self, metabolite_id)
Return the stoichiometric coefficient of a metabolite.

Parameters metabolite_id (str or cobra.Metabolite)-

get_coefficients (self, metabolite_ids)
Return the stoichiometric coefficients for a list of metabolites.

Parameters metabolite_ids (iterable) - Containing str or co-
bra.Metabolite™"s.

add_metabolites (self, metabolites_to_add, combine=True, reversibly=True)
Add metabolites and stoichiometric coefficients to the reaction. If the final coefficient for a metabolite
is O then it is removed from the reaction.

The change is reverted upon exit when using the model as a context.
Parameters

* metabolites_to_add (dict) — Dictionary with metabolite objects or
metabolite identifiers as keys and coefficients as values. If keys are strings (name
of a metabolite) the reaction must already be part of a model and a metabolite
with the given name must exist in the model.

122 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

cobra Documentation, Release 0.18.1

* combine (bool) — Describes behavior a metabolite already exists in the reac-
tion. True causes the coefficients to be added. False causes the coefficient to be
replaced.

* reversibly (bool) — Whether to add the change to the context to make the
change reversibly or not (primarily intended for internal use).

subtract_metabolites (self, metabolites, combine=True, reversibly=True)
Subtract metabolites from a reaction.

That means add the metabolites with -1*coefficient. If the final coefficient for a metabolite is O then
the metabolite is removed from the reaction.

Notes

* A final coefficient < O implies a reactant.

* The change is reverted upon exit when using the model as a context.

Parameters

* metabolites (dict)— Dictionary where the keys are of class Metabolite and
the values are the coefficients. These metabolites will be added to the reaction.

* combine (bool) — Describes behavior a metabolite already exists in the reac-
tion. True causes the coefficients to be added. False causes the coefficient to be
replaced.

* reversibly (bool) — Whether to add the change to the context to make the
change reversibly or not (primarily intended for internal use).
property reaction (self)
Human readable reaction string

build reaction_string (self, use_metabolite_names=False)
Generate a human readable reaction string

check_mass_balance (self)
Compute mass and charge balance for the reaction

returns a dict of {element: amount} for unbalanced elements. “charge” is treated as an element in this
dict This should be empty for balanced reactions.

property compartments (self)
lists compartments the metabolites are in

get_compartments (self)
lists compartments the metabolites are in

_associate_gene (self, cobra_gene)
Associates a cobra.Gene object with a cobra.Reaction.

Parameters cobra_gene (cobra.core.Gene.Gene) —

_dissociate_gene (self, cobra_gene)
Dissociates a cobra.Gene object with a cobra.Reaction.

Parameters cobra_gene (cobra.core.Gene.Gene) —

knock_out (self)
Knockout reaction by setting its bounds to zero.

build_reaction_from_string (self, reaction_str, verbose=True, fwd_arrow=None,

rev_arrow=None, reversible_arrow=None, term_split="+")
Builds reaction from reaction equation reaction_str using parser

17.1. cobra 123

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

Takes a string and using the specifications supplied in the optional arguments infers a set of metabo-
lites, metabolite compartments and stoichiometries for the reaction. It also infers the reversibility of
the reaction from the reaction arrow.

Changes to the associated model are reverted upon exit when using the model as a context.
Parameters
e reaction_str (string) — a string containing a reaction formula (equation)
* verbose (boo1l) - setting verbosity of function
e fwd_arrow (re.compile) — for forward irreversible reaction arrows
e rev_arrow (re.compile)— for backward irreversible reaction arrows
* reversible_arrow (re.compile) - for reversible reaction arrows
* term_split (string) - dividing individual metabolite entries

summary (self, solution=None, threshold=0.01, fva=None, names=False,

float_format="{:.3g}'" format)
Create a summary of the producing and consuming fluxes of the reaction.

Parameters

* solution (cobra.Solution, optional)— A previous model solution
to use for generating the summary. If None, the summary method will resolve
the model. Note that the solution object must match the model, i.e., changes to
the model such as changed bounds, added or removed reactions are not taken into
account by this method (default None).

e threshold (float, optional) — Threshold below which fluxes are not
reported. May not be smaller than the model tolerance (default 0.01).

e fva (pandas.DataFrame or float, optional)— Whether or not to
include flux variability analysis in the output. If given, fva should either be a
previous FVA solution matching the model or a float between 0 and 1 representing
the fraction of the optimum objective to be searched (default None).

e names (bool, optional)—- Emitreaction and metabolite names rather than
identifiers (default False).

e float_format (callable, optional)-Format string for floats (default
'{:3G}'.format).

Returns
Return type cobra.ReactionSummary
See also:
Metabolite.summary (), Model.summary ()

__str__ (self)
Return str(self).

_repr_html_ (self)

class cobra.core.Group (id, name=", members=None, kind=None)

Bases: cobra.core.object.Object
Manage groups via this implementation of the SBML group specification.

Group is a class for holding information regarding a pathways, subsystems, or other custom groupings of
objects within a cobra.Model object.

Parameters
* id (str) - The identifier to associate with this group

* name (str, optional)- A human readable name for the group

124

Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

cobra Documentation, Release 0.18.1

* members (iterable, optional) — A DictList containing references to
cobra.Model-associated objects that belong to the group.

e kind ({"collection", "classification", "partonomy"},
optional) — The kind of group, as specified for the Groups feature in the SBML
level 3 package specification. Can be any of “classification”, “partonomy”, or
“collection”. The default is “collection”. Please consult the SBML level 3 package
specification to ensure you are using the proper value for kind. In short, members of
a “classification” group should have an “is-a” relationship to the group (e.g. member
is-a polar compound, or member is-a transporter). Members of a “partonomy” group
should have a “part-of” relationship (e.g. member is part-of glycolysis). Members
of a “collection” group do not have an implied relationship between the members,
so use this value for kind when in doubt (e.g. member is a gap-filled reaction, or
member is involved in a disease phenotype).

KIND_TYPES = ['collection', 'classification', 'partonomy']
__len__ (self)

property members (self)

property kind (self)

add_members (self, new_members)
Add objects to the group.

Parameters new_members (11ist)— A list of cobrapy objects to add to the group.

remove_members (self, to_remove)
Remove objects from the group.

Parameters to_remove (1ist)— A list of cobra objects to remove from the group

class cobra.core.Solution (objective_value, status, fluxes, reduced_costs=None,

shadow_prices=None, **kwargs)
Bases: object

A unified interface to a cobra.Model optimization solution.

Notes
Solution is meant to be constructed by get_solution please look at that function to fully understand the
Solution class.

objective_value
The (optimal) value for the objective function.

Type float

status
The solver status related to the solution.

Type str

fluxes
Contains the reaction fluxes (primal values of variables).

Type pandas.Series

reduced_costs
Contains reaction reduced costs (dual values of variables).

Type pandas.Series

shadow_prices
Contains metabolite shadow prices (dual values of constraints).

Type pandas.Series

17.1. cobra 125

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

cobra Documentation, Release 0.18.1

get_primal_by_id

__repr__ (self)
String representation of the solution instance.

_repr_html_ (self)

__getitem___ (self, reaction_id)
Return the flux of a reaction.

Parameters reaction (st r)— A model reaction ID.

to_frame (self)
Return the fluxes and reduced costs as a data frame

class cobra.core.LegacySolution (f, x=None, x_dict=None, y=None, y_dict=None,

solver=None, the_time=0, status='NA', **kwargs)
Bases: object

Legacy support for an interface to a cobra.Model optimization solution.

£
The objective value
Type float
solver
A string indicating which solver package was used.
Type str
X
List or Array of the fluxes (primal values).
Type iterable
x_dict
A dictionary of reaction IDs that maps to the respective primal values.
Type dict
y
List or Array of the dual values.
Type iterable
y_dict

A dictionary of reaction IDs that maps to the respective dual values.

Type dict

Warning: The LegacySolution class and its interface is deprecated.

__repr__ (self)
String representation of the solution instance.

__getitem__ (self, reaction_id)
Return the flux of a reaction.

Parameters reaction_id (str)— A reaction ID.

dress_results (self, model)
Method could be intended as a decorator.

Warning: deprecated

126

Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

cobra Documentation, Release 0.18.1

cobra.core.get_solution (model, reactions=None, metabolites=None, raise_error=False)
Generate a solution representation of the current solver state.

Parameters
¢ model (cobra.Model) — The model whose reactions to retrieve values for.

* reactions (I1ist, optional)— An iterable of cobra.Reaction objects. Uses
model.reactions by default.

* metabolites (list, optional) — An iterable of cobra.Metabolite objects.
Uses model.metabolites by default.

* raise_error (bool) — If true, raise an OptimizationError if solver status is not
optimal.

Returns

Return type cobra.Solution

Note: This is only intended for the optlang solver interfaces and not the legacy solvers.

class cobra.core.Species (id=None, name=None)
Bases: cobra.core.object.Object

Species is a class for holding information regarding a chemical Species
Parameters
e id (string) - An identifier for the chemical species
¢ name (string)— A human readable name.
property reactions (self)

__getstate__ (self)

Remove the references to container reactions when serializing to avoid problems associated with
recursion.

copy (self)
When copying a reaction, it is necessary to deepcopy the components so the list references aren’t
carried over.

Additionally, a copy of a reaction is no longer in a cobra.Model.
This should be fixed with self.__deepcopy__ if possible
property model (self)

class cobra.core.MetaboliteSummary (metabolite, model, **kwargs)
Bases: cobra.core. summary.Summary

Define the metabolite summary.

metabolite
The metabolite to summarize.

Type cobra.Metabolite

See also:
Summary Parent that defines further attributes.

ReactionSummary, ModelSummary
_generate (self)
Returns flux_summary — The DataFrame of flux summary data.

Return type pandas.DataFrame

17.1. cobra 127

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

to_frame (self)

Returns

Return type A pandas.DataFrame of the summary.
_to_table (self)

Returns

Return type A string of the summary table.

class cobra.core.Summary (model, solution=None, threshold=None, fva=None, names=False,

float_format="{:.3G}" format, **kwargs)
Bases: object

Define the abstract base summary.

model
The metabolic model in which to generate a summary description.

Type cobra.Model

solution
A solution that matches the given model.

Type cobra.Solution

threshold
Threshold below which fluxes are not reported.

Type float, optional

fva
The result of a flux variability analysis (FVA) involving reactions of interest if an FVA was requested.

Type pandas.DataFrame, optional

names
Whether or not to use object names rather than identifiers.

Type bool

float_format
Format string for displaying floats.

Type callable

to_frame ()
Return a data frame representation of the summary.

abstract _generate (self)
Generate the summary for the required cobra object.

This is an abstract method and thus the subclass needs to implement it.

_process_flux_dataframe (self, flux_dataframe)
Process a flux DataFrame for convenient downstream analysis.

This method removes flux entries which are below the threshold and also adds information regarding
the direction of the fluxes. It is used in both ModelSummary and MetaboliteSummary.

Parameters flux_dataframe (pandas.DataFrame) — The pandas.DataFrame to
process.

Returns
Return type A processed pandas.DataFrame.

abstract to_frame (self)
Generate a pandas DataFrame.

This is an abstract method and thus the subclass needs to implement it.

128 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

abstract _to_table (self)
Generate a pretty-print table.

This is an abstract method and thus the subclass needs to implement it.

__str__ (self)
Return str(self).

_repr_html_ (self)

cobra. flux_analysis

Submodules

cobra.flux analysis.deletion

Module Contents

Functions

_reactions_knockouts_with_restore(model,

reactions)

_get_growt h(model)

_reaction_deletion(model, ids)

_gene_delet ion(model, ids)

_reaction_deletion_worker(ids)

_gene_deletion_worker(ids)

_init_worker(model)

_multi_deletion(model, entity, element_lists,
method="fba’, solution=None, processes=None,
**kwargs)

Provide a common interface for single or multiple
knockouts.

_entities_ids(entities)

element 11st s(entities, *ids)

single_reaction_deletion(model,
tion_list=None, method="fba’,
processes=None, **kwargs)

reac-
solution=None,

Knock out each reaction from a given list.

single_gene_deletion(model,
gene_list=None, = method="fba’,
processes=None, **kwargs)

solution=None,

Knock out each gene from a given list.

double_reaction_deletion(model, reac-
tion_list1=None, reaction_list2=None, method="fba’,
solution=None, processes=None, **kwargs)

Knock out each reaction pair from the combinations
of two given lists.

double_gene_deletion(model,
gene_listI=None, gene_list2=None, method="fba’,
solution=None, processes=None, **kwargs)

Knock out each gene pair from the combination of
two given lists.

cobra.flux_analysis.deletion.LOGGER

cobra.flux_analysis.deletion.CONFIGURATION

cobra.flux_analysis.deletion._reactions_knockouts_with_restore (model, reac-
tions)

cobra.flux_analysis.deletion._get_growth (model)

cobra.flux_analysis.deletion._reaction_deletion (model, ids)

cobra.flux_analysis.deletion._gene_deletion (model, ids)

17.1. cobra 129

cobra Documentation, Release 0.18.1

cobra.flux_analysis.deletion._reaction_deletion_worker (ids)
cobra.flux_analysis.deletion._gene_deletion_worker (ids)
cobra.flux_analysis.deletion._init_worker (model)

cobra.flux_analysis.deletion._multi_deletion (model, entity, element _lists,
method='fba’, solution=None, pro-

cesses=None, **kwargs)
Provide a common interface for single or multiple knockouts.

Parameters
* model (cobra.Model)— The metabolic model to perform deletions in.

* entity ('gene' or 'reaction')— The entity to knockout (cobra.Gene
or cobra.Reaction).

* element_lists (Iist)—Listofiterables “cobra.Reaction s or "cobra.Gene s
(or their IDs) to be deleted.

* method ({"fba", "moma", "linear moma", "room", "linear
room"}, optional)- Method used to predict the growth rate.

* solution (cobra.Solution, optional)— A previous solution to use as a
reference for (linear) MOMA or ROOM.

* processes (int, optional)— The number of parallel processes to run. Can
speed up the computations if the number of knockouts to perform is large. If not
passed, will be set to the number of CPUs found.

* kwargs — Passed on to underlying simulation functions.
Returns

A representation of all combinations of entity deletions. The columns are ‘growth’ and
‘status’, where

index [frozenset([str])] The gene or reaction identifiers that were knocked out.
growth [float] The growth rate of the adjusted model.
status [str] The solution’s status.
Return type pandas.DataFrame
cobra.flux_analysis.deletion._entities_ids (entities)

cobra.flux_analysis.deletion._element_1lists (entities, *ids)

cobra.flux_analysis.deletion.single_reaction_deletion (model, reac-
tion_list=None,
method=fba’, so-
lution=None, pro-

cesses=None, **kwargs)
Knock out each reaction from a given list.

Parameters
* model (cobra.Model)— The metabolic model to perform deletions in.

e reaction_list (iterable, optional)-cobra.Reaction s to be deleted.
If not passed, all the reactions from the model are used.

* method ({"fba", "moma", "linear moma", "room", "linear
room"}, optional)— Method used to predict the growth rate.

e solution (cobra.Solution, optional)— A previous solution to use as a
reference for (linear) MOMA or ROOM.

130 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

cobra Documentation, Release 0.18.1

* processes (int, optional)— The number of parallel processes to run. Can
speed up the computations if the number of knockouts to perform is large. If not
passed, will be set to the number of CPUs found.

* kwargs — Keyword arguments are passed on to underlying simulation functions
such as add_room.

Returns

A representation of all single reaction deletions. The columns are ‘growth’ and ‘status’,
where

index [frozenset([str])] The reaction identifier that was knocked out.
growth [float] The growth rate of the adjusted model.
status [str] The solution’s status.

Return type pandas.DataFrame

cobra.flux_analysis.deletion.single_gene_deletion (model, gene_list=None,
method='fba’, solution=None,

processes=None, **kwargs)
Knock out each gene from a given list.

Parameters
* model (cobra.Model)— The metabolic model to perform deletions in.

* gene_list (iterable) — cobra.Gene s to be deleted. If not passed, all the
genes from the model are used.

* method ({"fba", "moma", "linear moma", "room", "linear
room"}, optional)—Method used to predict the growth rate.

* solution (cobra.Solution, optional)— A previous solution to use as a
reference for (linear) MOMA or ROOM.

* processes (int, optional) - The number of parallel processes to run. Can
speed up the computations if the number of knockouts to perform is large. If not
passed, will be set to the number of CPUs found.

* kwargs — Keyword arguments are passed on to underlying simulation functions
such as add_room.

Returns

A representation of all single gene deletions. The columns are ‘growth’ and ‘status’,
where

index [frozenset([str])] The gene identifier that was knocked out.
growth [float] The growth rate of the adjusted model.
status [str] The solution’s status.

Return type pandas.DataFrame

cobra.flux_analysis.deletion.double_reaction_deletion (model, reac-
tion_list]=None, re-
action_list2=None,
method=fba’, so-
lution=None, pro-

cesses=None, **kwargs)
Knock out each reaction pair from the combinations of two given lists.

We say ‘pair’ here but the order order does not matter.
Parameters

* model (cobra.Model) — The metabolic model to perform deletions in.

17.1. cobra 131

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

cobra Documentation, Release 0.18.1

e reaction_listl (iterable, optional) - First iterable of ““co-
bra.Reaction™s to be deleted. If not passed, all the reactions from the model
are used.

e reaction_list2 (iterable, optional) — Second iterable of ““co-
bra.Reaction™"s to be deleted. If not passed, all the reactions from the model are
used.

* method ({"fba", "moma", "linear moma", "room", "linear

room"}, optional)—Method used to predict the growth rate.

* solution (cobra.Solution, optional)— A previous solution to use as a
reference for (linear) MOMA or ROOM.

* processes (int, optional)- The number of parallel processes to run. Can
speed up the computations if the number of knockouts to perform is large. If not
passed, will be set to the number of CPUs found.

* kwargs — Keyword arguments are passed on to underlying simulation functions
such as add_room.

Returns

A representation of all combinations of reaction deletions. The columns are ‘growth’ and
‘status’, where

index [frozenset([str])] The reaction identifiers that were knocked out.
growth [float] The growth rate of the adjusted model.
status [str] The solution’s status.

Return type pandas.DataFrame

cobra.flux_analysis.deletion.double_gene_deletion (model, gene_list]=None,

gene_list2=None,
method=fba', solution=None,

processes=None, **kwargs)
Knock out each gene pair from the combination of two given lists.

We say ‘pair’ here but the order order does not matter.
Parameters
* model (cobra.Model) — The metabolic model to perform deletions in.

* gene_listl (iterable, optional)— Firstiterable of *“cobra.Gene s to be
deleted. If not passed, all the genes from the model are used.

e gene_list2 (iterable, optional)- Second iterable of “~~cobra.Gene s to
be deleted. If not passed, all the genes from the model are used.

* method ({"fba", "moma", "linear moma", "room", "linear
room"}, optional)- Method used to predict the growth rate.

* solution (cobra.Solution, optional)— A previous solution to use as a
reference for (linear) MOMA or ROOM.

* processes (int, optional)— The number of parallel processes to run. Can
speed up the computations if the number of knockouts to perform is large. If not
passed, will be set to the number of CPUs found.

* kwargs — Keyword arguments are passed on to underlying simulation functions
such as add_room.

Returns

A representation of all combinations of gene deletions. The columns are ‘growth’ and
‘status’, where

132

Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

cobra Documentation, Release 0.18.1

index [frozenset([str])] The gene identifiers that were knocked out.
growth [float] The growth rate of the adjusted model.
status [str] The solution’s status.

Return type pandas.DataFrame

cobra.flux analysis.fastcc

Provide an implementation of FASTCC.

Module Contents

Functions
find sparse_mode(model, rxns, Perform the LP required for FASTCC.
flux_threshold, zero_cutoff)
_flip coefficients(model, rxns) Flip the coefficients for optimizing in reverse direc-
tion.
fastcc(model, flux_threshold=1.0, Check consistency of a metabolic network using
zero_cutoff=None) FASTCC!.
cobra.flux_analysis.fastcc._find_ sparse_mode (model, rxns, flux_threshold,

zero_cutoff’)
Perform the LP required for FASTCC.

Parameters
* model (cobra.core.Model)— The cobra model to perform FASTCC on.
e rxns (list of cobra.core.Reactions)— The reactions to use for LP.
e flux_threshold (f1oat)— The upper threshold an auxiliary variable can have.
e zero_cutoff (float) - The cutoff below which flux is considered zero.
Returns result — The list of reactions to consider as consistent.
Return type list

cobra.flux_analysis.fastcc._£flip_ coefficients (model, rxns)
Flip the coefficients for optimizing in reverse direction.

cobra.flux_analysis.fastcc. fastce (model, flux_threshold=1.0, zero_cutoff=None)
Check consistency of a metabolic network using FASTCC'.

FASTCC (Fast Consistency Check) is an algorithm for rapid and efficient consistency check in metabolic
networks. FASTCC is a pure LP implementation and is low on computation resource demand. FASTCC
also circumvents the problem associated with reversible reactions for the purpose. Given a global model, it
will generate a consistent global model i.e., remove blocked reactions. For more details on FASTCC, please
check'.

Parameters
* model (cobra.Model) — The constraint-based model to operate on.

e flux_ threshold (float, optional (default 1.0)) — The flux
threshold to consider.

! Vlassis N, Pacheco MP, Sauter T (2014) Fast Reconstruction of Compact Context-Specific Metabolic Network Models. PLoS Comput
Biol 10(1): e1003424. doi:10.1371/journal.pcbi.1003424

17.1. cobra 133

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

cobra Documentation, Release 0.18.1

e zero_cutoff (float, optional)- The cutoff to consider for zero flux (de-
fault model.tolerance).

Returns The consistent constraint-based model.
Return type cobra.Model

Notes

The LP used for FASTCC is like so: maximize: sum_{iinJ} z_is.t. : Z_iin [0, varepsilon] foralliinJ, z_i
in mathbb{R}_+

v_igez_iforalliinJSv=0vinB

References

cobra.flux_analysis.gapfilling

Module Contents

Classes
GapFiller Class for performing gap filling.
Functions
gapfill(model, universal=None, Perform gapfilling on a model.
lower_bound=0.05, penalties=None, de-

mand_reactions=True, exchange_reactions=False,
iterations=1)

class cobra.flux_analysis.gapfilling.GapFiller (model, universal=None,
lower_bound=0.05,
penalties=None, ex-

change_reactions=False,
demand_reactions=True,

integer_threshold=1e-06)
Bases: object

Class for performing gap filling.

This class implements gap filling based on a mixed-integer approach, very similar to that described in' and
the ‘no-growth but growth’ part of [2]_ but with minor adjustments. In short, we add indicator variables for
using the reactions in the universal model, z_i and then solve problem

minimize sum_ic_i*z_is.t. Sv=0

v.o>=tlb i<=v_i<=ub_iv_i=0ifz_i=0

! Reed, Jennifer L., Trina R. Patel, Keri H. Chen, Andrew R. Joyce, Margaret K. Applebee, Christopher D. Herring, Olivia T. Bui, Eric
M. Knight, Stephen S. Fong, and Bernhard O. Palsson. “Systems Approach to Refining Genome Annotation.” Proceedings of the National
Academy of Sciences 103, no. 46 (2006): 17480-17484.

[2] Kumar, Vinay Satish, and Costas D. Maranas. “GrowMatch: An Automated Method for Reconciling In Silico/In Vivo
Growth Predictions.” Edited by Christos A. Ouzounis. PLoS Computational Biology 5, no. 3 (March 13, 2009): e1000308.
doi:10.1371/journal.pcbi.1000308.

[3] http://opencobra.github.io/cobrapy/tags/gapfilling/

[4] Schultz, André, and Amina A. Qutub. “Reconstruction of Tissue-Specific Metabolic Networks Using CORDA.” Edited by Costas D.
Maranas. PLOS Computational Biology 12, no. 3 (March 4, 2016): e1004808. doi:10.1371/journal.pcbi.1004808.

[5] Diener, Christian https://github.com/cdiener/corda

134 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
http://opencobra.github.io/cobrapy/tags/gapfilling/
https://github.com/cdiener/corda

cobra Documentation, Release 0.18.1

where 1b, ub are the upper, lower flux bounds for reaction i, c_i is a cost parameter and the objective v_o
is greater than the lower bound t. The default costs are 1 for reactions from the universal model, 100 for
exchange (uptake) reactions added and 1 for added demand reactions.

Note that this is a mixed-integer linear program and as such will expensive to solve for large models.
Consider using alternatives [3]_ such as CORDA instead [4,5]

Parameters
* model (cobra.Model)— The model to perform gap filling on.

¢ universal (cobra.Model)— A universal model with reactions that can be used
to complete the model.

* lower_bound (float) — The minimally accepted flux for the objective in the
filled model.

* penalties (dict, None) - A dictionary with keys being ‘universal’ (all reac-
tions included in the universal model), ‘exchange’ and ‘demand’ (all additionally
added exchange and demand reactions) for the three reaction types. Can also have
reaction identifiers for reaction specific costs. Defaults are 1, 100 and 1 respectively.

* integer_threshold (float) — The threshold at which a value is considered
non-zero (aka integrality threshold). If gapfilled models fail to validate, you may
want to lower this value.

* exchange_reactions (bool) — Consider adding exchange (uptake) reactions
for all metabolites in the model.

* demand_reactions (bool)— Consider adding demand reactions for all metabo-
lites.

References

extend_model (self, exchange_reactions=False, demand_reactions=True)
Extend gapfilling model.

Add reactions from universal model and optionally exchange and demand reactions for all metabolites
in the model to perform gapfilling on.

Parameters

* exchange_reactions (bool) — Consider adding exchange (uptake) reac-
tions for all metabolites in the model.

* demand_reactions (bool) — Consider adding demand reactions for all
metabolites.

update_costs (self)
Update the coefficients for the indicator variables in the objective.

Done incrementally so that second time the function is called, active indicators in the current solutions
gets higher cost than the unused indicators.

add_switches_and objective (self)
Update gapfilling model with switches and the indicator objective.

£i11 (self, iterations=1)
Perform the gapfilling by iteratively solving the model, updating the costs and recording the used
reactions.

Parameters iterations (int)— The number of rounds of gapfilling to perform. For
every iteration, the penalty for every used reaction increases linearly. This way, the
algorithm is encouraged to search for alternative solutions which may include previ-
ously used reactions. I.e., with enough iterations pathways including 10 steps will
eventually be reported even if the shortest pathway is a single reaction.

17.1. cobra 135

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

cobra Documentation, Release 0.18.1

Returns A list of lists where each element is a list reactions that were used to gapfill the
model.

Return type iterable

Raises RuntimeError — If the model fails to be validated (i.e. the original model with
the proposed reactions added, still cannot get the required flux through the objective).

validate (self, reactions)

cobra.flux_analysis.gapfilling.gapfill (model, universal=None, lower_bound=0.05,
penalties=None, demand_reactions=True, ex-

change_reactions=False, iterations=1)
Perform gapfilling on a model.

See documentation for the class GapFiller.
Parameters
* model (cobra.Model)— The model to perform gap filling on.

e universal (cobra.Model, None)- A universal model with reactions that can
be used to complete the model. Only gapfill considering demand and exchange reac-
tions if left missing.

* lower_bound (float) — The minimally accepted flux for the objective in the
filled model.

* penalties (dict, None)— A dictionary with keys being ‘universal’ (all reac-
tions included in the universal model), ‘exchange’ and ‘demand’ (all additionally
added exchange and demand reactions) for the three reaction types. Can also have
reaction identifiers for reaction specific costs. Defaults are 1, 100 and 1 respectively.

e iterations (int)— The number of rounds of gapfilling to perform. For every it-
eration, the penalty for every used reaction increases linearly. This way, the algorithm
is encouraged to search for alternative solutions which may include previously used
reactions. Le., with enough iterations pathways including 10 steps will eventually be
reported even if the shortest pathway is a single reaction.

* exchange_reactions (bool) — Consider adding exchange (uptake) reactions
for all metabolites in the model.

* demand_reactions (bool)— Consider adding demand reactions for all metabo-
lites.

Returns list of lists with on set of reactions that completes the model per requested iteration.

Return type iterable

Examples

>>> import cobra.test as ct

>>> from cobra import Model

>>> from cobra.flux analysis import gapfill

>>> model = ct.create_test_model ("salmonella')

>>> universal = Model ('universal')

>>> universal.add_reactions (model.reactions.GF6PTA.copy())
>>> model.remove_reactions ([model.reactions.GF6PTA])

>>> gapfill (model, universal)

136 Chapter 17. API Reference

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

cobra.flux analysis.geometric

Provide an implementation of geometric FBA.

Module Contents

Functions
geometric fba(model, epsilon=1e-06, Perform geometric FBA to obtain a unique, centered
max_tries=200, processes=None) flux distribution.

cobra.flux_analysis.geometric.LOGGER

cobra.flux_analysis.geometric.geometric_fba (model, epsilon=1e-06, max_tries=200,

processes=None)
Perform geometric FBA to obtain a unique, centered flux distribution.

Geometric FBA' formulates the problem as a polyhedron and then solves it by bounding the convex hull of
the polyhedron. The bounding forms a box around the convex hull which reduces with every iteration and
extracts a unique solution in this way.

Parameters
* model (cobra.Model)— The model to perform geometric FBA on.

* epsilon (float, optional)— The convergence tolerance of the model (de-
fault 1E-06).

* max_tries (int, optional)-Maximum number of iterations (default 200).

* processes (int, optional)- The number of parallel processes to run. If not
explicitly passed, will be set from the global configuration singleton.

Returns The solution object containing all the constraints required for geometric FBA.

Return type cobra.Solution

References

cobra. flux analysis.helpers

Helper functions for all flux analysis methods.

Module Contents

Functions

normalize cutoff(model, zero_cutoff=None) Return a valid zero cutoff value.

cobra.flux_analysis.helpers.LOGGER

cobra.flux_analysis.helpers.normalize_cutoff (model, zero_cutoff=None)
Return a valid zero cutoff value.

! Smallbone, Kieran & Simeonidis, Vangelis. (2009). Flux balance analysis: A geometric perspective. Journal of theoretical biology.258.
311-5. 10.1016/j.jtbi.2009.01.027.

17.1. cobra 137

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

cobra Documentation, Release 0.18.1

cobra.flux analysis.loopless

Provides functions to remove thermodynamically infeasible loops.

Module Contents

Functions
add_loopless(model, zero_cutoff=None) Modify a model so all feasible flux distributions are
loopless.
_add_cycle_free(model, fluxes) Add constraints for CycleFreeFlux.
loopless_solution(model, fluxes=None) Convert an existing solution to a loopless one.
loopless_fva_iter(model, reaction, solu- Pluginto getaloopless FVA solution from single FVA
tion=False, zero_cutoff=None) iteration.

cobra.flux_analysis.loopless.LOGGER

cobra.flux_analysis.loopless.add_loopless (model, zero_cutoff=None)
Modify a model so all feasible flux distributions are loopless.

In most cases you probably want to use the much faster loopless_solution. May be used in cases where you
want to add complex constraints and objecives (for instance quadratic objectives) to the model afterwards
or use an approximation of Gibbs free energy directions in you model. Adds variables and constraints to
a model which will disallow flux distributions with loops. The used formulation is described in [1]_. This
function will modify your model.

Parameters
¢ model (cobra.Model) — The model to which to add the constraints.

* zero_cutoff (positive float, optional)— Cutoff used for null space.
Coefficients with an absolute value smaller than zero_cutoff are considered to be zero
(default model.tolerance).

Returns

Return type Nothing

References
cobra.flux_analysis.loopless._add_cycle_free (model, fluxes)
Add constraints for CycleFreeFlux.

cobra.flux_analysis.loopless.loopless_solution (model, fluxes=None)
Convert an existing solution to a loopless one.

Removes as many loops as possible (see Notes). Uses the method from CycleFreeFlux [1]_ and is much
faster than add_loopless and should therefore be the preferred option to get loopless flux distributions.

Parameters
* model (cobra.Model) — The model to which to add the constraints.

e fluxes (dict) — A dictionary {rxn_id: flux} that assigns a flux to each reaction.
If not None will use the provided flux values to obtain a close loopless solution.

Returns A solution object containing the fluxes with the least amount of loops possible or
None if the optimization failed (usually happening if the flux distribution in fluxes is
infeasible).

Return type cobra.Solution

138 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#dict

cobra Documentation, Release 0.18.1

Notes

The returned flux solution has the following properties:
* it contains the minimal number of loops possible and no loops at all if all flux bounds include zero

« it has an objective value close to the original one and the same objective value id the objective expres-
sion can not form a cycle (which is usually true since it consumes metabolites)

* it has the same exact exchange fluxes as the previous solution

« all fluxes have the same sign (flow in the same direction) as the previous solution

References

cobra.flux_analysis.loopless.loopless_fva_iter (model, reaction, solution=False,

zero_cutoff=None)
Plugin to get a loopless FVA solution from single FVA iteration.

Assumes the following about model and reaction: 1. the model objective is set to be reaction 2. the model
has been optimized and contains the minimum/maximum flux for

reaction

3. the model contains an auxiliary variable called “fva_old_objective” denoting the previous objective

Parameters
* model (cobra.Model) — The model to be used.
* reaction (cobra.Reaction)— The reaction currently minimized/maximized.

¢ solution (boolean, optional)— Whether to return the entire solution or
only the minimum/maximum for reaction.

* zero_cutoff (positive float, optional) — Cutoff used for loop re-
moval. Fluxes with an absolute value smaller than zero_cutoff are considered to
be zero (default model.tolerance).

Returns Returns the minimized/maximized flux through reaction if all_fluxes == False (de-
fault). Otherwise returns a loopless flux solution containing the minimum/maximum flux
for reaction.

Return type single float or dict

cobra.flux analysis.moma

Provide minimization of metabolic adjustment (MOMA).

Module Contents

Functions
moma(model, solution=None, linear=True) Compute a single solution based on (linear) MOMA.
add_moma(model, solution=None, linear=True) Add constraints and objective representing for

MOMA.

cobra.flux_analysis.moma.moma (model, solution=None, linear=True)
Compute a single solution based on (linear) MOMA.

Compute a new flux distribution that is at a minimal distance to a previous reference solution. Minimization

17.1. cobra 139

https://docs.python.org/3/library/stdtypes.html#dict

cobra Documentation, Release 0.18.1

of metabolic adjustment (MOMA) is generally used to assess the impact of knock-outs. Thus the typical
usage is to provide a wildtype flux distribution as reference and a model in knock-out state.

Parameters

* model (cobra.Model) — The model state to compute a MOMA-based solution
for.

e solution (cobra.Solution, optional)-— A (wildtype) reference solution.

e linear (bool, optional)—- Whether to use the linear MOMA formulation or
not (default True).

Returns A flux distribution that is at a minimal distance compared to the reference solution.
Return type cobra.Solution

See also:

add_moma () add MOMA constraints and objective

cobra.flux_analysis.moma.add_moma (model, solution=None, linear=True)

Add constraints and objective representing for MOMA.

This adds variables and constraints for the minimization of metabolic adjustment (MOMA) to the model.
Parameters

* model (cobra.Model)— The model to add MOMA constraints and objective to.

* solution (cobra.Solution, optional)— A previous solution to use as a
reference. If no solution is given, one will be computed using pFBA.

e linear (bool, optional)—- Whether to use the linear MOMA formulation or
not (default True).

Notes
In the original MOMA' specification one looks for the flux distribution of the deletion (vAd) closest to the
fluxes without the deletion (v). In math this means:
minimize sum_i (vAd_i - v_1)"2 s.t. SvAd =0

Ib_i <= vAd_i<=ub_i
Here, we use a variable transformation v/t := vAd_i - v_i. Substituting and using the fact that Sv = 0 gives:
minimize sum_i (vM_1)"2 s.t. SvAd =0

vAt=vAd_i-v_ilb_i<=vAd_i<=ub_i

So basically we just re-center the flux space at the old solution and then find the flux distribution closest to
the new zero (center). This is the same strategy as used in cameo.

In the case of linear MOMA?, we instead minimize sum_i abs(vAt_i). The linear MOMA is typically
significantly faster. Also quadratic MOMA tends to give flux distributions in which all fluxes deviate from
the reference fluxes a little bit whereas linear MOMA tends to give flux distributions where the majority of
fluxes are the same reference with few fluxes deviating a lot (typical effect of L2 norm vs L1 norm).

The former objective function is saved in the optlang solver interface as "moma_old_objective" and
this can be used to immediately extract the value of the former objective after MOMA optimization.

See also:

! Segre, Daniel, Dennis Vitkup, and George M. Church. “Analysis of Optimality in Natural and Perturbed Metabolic Networks.” Proceed-
ings of the National Academy of Sciences 99, no. 23 (November 12, 2002): 15112. https://doi.org/10.1073/pnas.232349399.

2 Becker, Scott A, Adam M Feist, Monica L Mo, Gregory Hannum, Bernhard @ Palsson, and Markus J Herrgard. “Quantitative Prediction
of Cellular Metabolism with Constraint-Based Models: The COBRA Toolbox.” Nature Protocols 2 (March 29, 2007): 727.

140 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://doi.org/10.1073/pnas.232349399

cobra Documentation, Release 0.18.1

pfba () parsimonious FBA
References
cobra.flux analysis.parsimonious
Module Contents

Functions

optimize_minimal_ flux(*args, **kwargs)

pfba(model, fraction_of optimum=1.0, objec- Perform basic pFBA (parsimonious Enzyme Usage
tive=None, reactions=None) Flux Balance Analysis)

add_pfba(model, objective=None, frac- Add pFBA objective

tion_of_optimum=1.0)

cobra.flux_analysis.parsimonious.LOGGER
cobra.flux_analysis.parsimonious.optimize_minimal_flux (*args, **kwargs)

cobra.flux_analysis.parsimonious.pfba (model, fraction_of _optimum=1.0, objec-
tive=None, reactions=None)
Perform basic pFBA (parsimonious Enzyme Usage Flux Balance Analysis) to minimize total flux.

pFBA [1] adds the minimization of all fluxes the the objective of the model. This approach is motivated by
the idea that high fluxes have a higher enzyme turn-over and that since producing enzymes is costly, the cell
will try to minimize overall flux while still maximizing the original objective function, e.g. the growth rate.

Parameters
* model (cobra.Model) - The model

e fraction_of_optimum (float, optional)— Fraction of optimum which
must be maintained. The original objective reaction is constrained to be greater than
maximal_value * fraction_of_optimum.

* objective (dict or model.problem.Objective)— A desired objective
to use during optimization in addition to the pFBA objective. Dictionaries (reaction
as key, coefficient as value) can be used for linear objectives.

* reactions (iterable) — List of reactions or reaction identifiers. Implies re-
turn_frame to be true. Only return fluxes for the given reactions. Faster than fetching
all fluxes if only a few are needed.

Returns The solution object to the optimized model with pFBA constraints added.

Return type cobra.Solution

References

cobra.flux_analysis.parsimonious.add_pfba (model, objective=None, frac-
tion_of _optimum=1.0)
Add pFBA objective

Add objective to minimize the summed flux of all reactions to the current objective.
See also:

ptba ()

Parameters

17.1. cobra 141

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

cobra Documentation, Release 0.18.1

* model (cobra.Model)— The model to add the objective to

* objective — An objective to set in combination with the pFBA objective.

* fraction_of_optimum (float) — Fraction of optimum which must be main-
tained. The original objective reaction is constrained to be greater than maxi-

mal_value * fraction_of_optimum.

cobra.flux analysis.phenotype_phase plane

Module Contents

Functions

production_envelope(model, reactions, objec-
tive=None, carbon_sources=None, points=20, thresh-
old=None)

Calculate the objective value conditioned on all com-
binations of

add_envelope(model, reactions, grid, c_input,
c_output, threshold)

total_yield(input_fluxes, input_elements, out-
put_flux, output_elements)

Compute total output per input unit.

reaction_element s(reaction)

Split metabolites into the atoms times their stoichio-
metric coefficients.

reaction_ weight(reaction)

Return the metabolite weight times its stoichiometric
coefficient.

total_components_ flux(flux,
consumption=True)

components,

Compute the total components consumption or pro-
duction flux.

find_carbon_sources(model)

Find all active carbon source reactions.

cobra.flux_analysis.phenotype_phase_plane.LOGGER

cobra.flux_analysis.phenotype_phase_plane.production_envelope (model,

reac-

tions, objec-
tive=None,

car-
bon_sources=None,
points=20,

thresh-

old=None)

Calculate the objective value conditioned on all combinations of fluxes for a set of chosen reactions

The production envelope can be used to analyze a model’s ability to produce a given compound conditional
on the fluxes for another set of reactions, such as the uptake rates. The model is alternately optimized
with respect to minimizing and maximizing the objective and the obtained fluxes are recorded. Ranges to
compute production is set to the effective bounds, i.e., the minimum / maximum fluxes that can be obtained

given current reaction bounds.

Parameters

* model (cobra.Model)— The model to compute the production envelope for.

e reactions (Iist or string) - A list of reactions, reaction identifiers or a

single reaction.

* objective
Objective,

(string,
optional) — The objective (reaction) to use for the production

dict, model.solver.interface.

envelope. Use the model’s current objective if left missing.

* carbon_sources (list or string,

optional)— One or more reactions

or reaction identifiers that are the source of carbon for computing carbon (mol carbon

142

Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

cobra Documentation, Release 0.18.1

in output over mol carbon in input) and mass yield (gram product over gram output).
Only objectives with a carbon containing input and output metabolite is supported.
Will identify active carbon sources in the medium if none are specified.

* points (int, optional)- The number of points to calculate production for.

e threshold (float, optional)— A cut-off under which flux values will be
considered to be zero (default model.tolerance).

Returns
A data frame with one row per evaluated point and
* reaction id : one column per input reaction indicating the flux at each given point,
* carbon_source: identifiers of carbon exchange reactions
A column for the maximum and minimum each for the following types:
* flux: the objective flux

* carbon_yield: if carbon source is defined and the product is a single metabolite (mol
carbon product per mol carbon feeding source)

* mass_yield: if carbon source is defined and the product is a single metabolite (gram
product per 1 g of feeding source)

Return type pandas.DataFrame

Examples

>>> import cobra.test

>>> from cobra.flux analysis import production_envelope
>>> model = cobra.test.create_test_model ("textbook™)

>>> production_envelope (model, ["EX glc_ D _e", "EX 02 e"])

cobra.flux_analysis.phenotype_phase_plane.add_envelope (model, reactions, grid,

c_input, c_output,
threshold)
cobra.flux_analysis.phenotype_phase_plane.total_yield (input_fluxes, in-
put_elements, out-
put_flux, out-

put_elements)
Compute total output per input unit.

Units are typically mol carbon atoms or gram of source and product.
Parameters

e input_fluxes (list)— A list of input reaction fluxes in the same order as the
input_components.

e input_elements (Iist)— A list of reaction components which are in turn list
of numbers.

* output_flux (float)— The output flux value.

* output_elements (1ist)— A listof stoichiometrically weighted output reaction
components.

Returns The ratio between output (mol carbon atoms or grams of product) and input (mol
carbon atoms or grams of source compounds).

Return type float

cobra.flux_analysis.phenotype_phase_plane.reaction_elements (reaction)
Split metabolites into the atoms times their stoichiometric coefficients.

17.1. cobra 143

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

cobra Documentation, Release 0.18.1

Parameters reaction (Reaction) — The metabolic reaction whose components are de-
sired.

Returns Each of the reaction’s metabolites’ desired carbon elements (if any) times that
metabolite’s stoichiometric coefficient.

Return type list

cobra.flux_analysis.phenotype_phase_plane.reaction_weight (reaction)
Return the metabolite weight times its stoichiometric coefficient.

cobra.flux_analysis.phenotype_phase_plane.total_components_flux (flux, com-
ponents,
consump-

)) tion=True)
Compute the total components consumption or production flux.

Parameters
e flux (float) - The reaction flux for the components.
e components (11st) — List of stoichiometrically weighted components.

* consumption (bool, optional)— Whether to sum up consumption or pro-
duction fluxes.

cobra.flux_analysis.phenotype_phase_plane.find_carbon_sources (model)
Find all active carbon source reactions.

Parameters model (Model) — A genome-scale metabolic model.
Returns The medium reactions with carbon input flux.

Return type list

cobra. flux_analysis.reaction

functions for analyzing / creating objective functions

Module Contents

Functions

assess(model, reaction, Assesses production capacity.
flux_coefficient_cutoff=0.001, solver=None)
assess_component(model, reaction, side, Assesses the ability of the model to provide sufficient

flux_coefficient_cutoff=0.001, solver=None) precursors,

_optimize or_value(model, value=0.0,

solver=None)

assess_precursors(model, reaction, Assesses the ability of the model to provide sufficient
flux_coefficient_cutoff=0.001, solver=None) precursors for

assess_products(model, reaction, Assesses whether the model has the capacity to absorb
flux_coefficient_cutoff=0.001, solver=None) the products of

cobra.flux_analysis.reaction.assess (model, reaction, flux_coefficient_cutoff=0.001,

)) solver=None)
Assesses production capacity.

Assesses the capacity of the model to produce the precursors for the reaction and absorb the production of
the reaction while the reaction is operating at, or above, the specified cutoff.

Parameters

144 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

cobra Documentation, Release 0.18.1

* model (cobra.Model) — The cobra model to assess production capacity for

e reaction (reaction identifier or cobra.Reaction) — The reac-
tion to assess

e flux coefficient_cutoff (float)— The minimum flux that reaction must
carry to be considered active.

¢ solver (basestring)— Solver name. If None, the default solver will be used.

Returns True if the model can produce the precursors and absorb the products for the reaction
operating at, or above, flux_coefficient_cutoff. Otherwise, a dictionary of { ‘precursor’:
Status, ‘product’: Status}. Where Status is the results from assess_precursors and as-
sess_products, respectively.

Return type bool or dict

cobra.flux_analysis.reaction.assess_component (model, reaction, side,
flux_coefficient_cutoff=0.001,

solver=None)
Assesses the ability of the model to provide sufficient precursors, or absorb products, for a reaction operating

at, or beyond, the specified cutoff.
Parameters
* model (cobra.Model) — The cobra model to assess production capacity for

e reaction (reaction identifier or cobra.Reaction) — The reac-
tion to assess

* side (basestring) - Side of the reaction, ‘products’ or ‘reactants’

e flux coefficient_cutoff (float)— The minimum flux that reaction must
carry to be considered active.

* solver (basestring)— Solver name. If None, the default solver will be used.

Returns True if the precursors can be simultaneously produced at the specified cutoff. False, if
the model has the capacity to produce each individual precursor at the specified threshold
but not all precursors at the required level simultaneously. Otherwise a dictionary of
the required and the produced fluxes for each reactant that is not produced in sufficient
quantities.

Return type bool or dict
cobra.flux_analysis.reaction._optimize_or_wvalue (model, value=0.0, solver=None)

cobra.flux_analysis.reaction.assess_precursors (model, reaction,
Sflux_coefficient_cutoff=0.001,

.)) solver=None))
Assesses the ability of the model to provide sufficient precursors for a reaction operating at, or beyond, the

specified cutoff.
Deprecated: use assess_component instead
Parameters
* model (cobra.Model) — The cobra model to assess production capacity for

e reaction (reaction identifier or cobra.Reaction) — The reac-
tion to assess

e flux_coefficient_cutoff (float)— The minimum flux that reaction must
carry to be considered active.

¢ solver (basestring)— Solver name. If None, the default solver will be used.

Returns True if the precursors can be simultaneously produced at the specified cutoff. False, if
the model has the capacity to produce each individual precursor at the specified threshold
but not all precursors at the required level simultaneously. Otherwise a dictionary of

17.1. cobra 145

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float

cobra Documentation, Release 0.18.1

the required and the produced fluxes for each reactant that is not produced in sufficient
quantities.

Return type bool or dict

cobra.flux_analysis.reaction.assess_products (model, reaction,
flux_coefficient_cutoff=0.001,

) solver=None)]
Assesses whether the model has the capacity to absorb the products of a reaction at a given flux rate.

Useful for identifying which components might be blocking a reaction from achieving a specific flux rate.
Deprecated: use assess_component instead
Parameters
* model (cobra.Model) — The cobra model to assess production capacity for

* reaction (reaction identifier or cobra.Reaction) — The reac-
tion to assess

e flux_ coefficient_cutoff (float)- The minimum flux that reaction must
carry to be considered active.

* solver (basestring)— Solver name. If None, the default solver will be used.

Returns True if the model has the capacity to absorb all the reaction products being simul-
taneously given the specified cutoff. False, if the model has the capacity to absorb each
individual product but not all products at the required level simultaneously. Otherwise a
dictionary of the required and the capacity fluxes for each product that is not absorbed in
sufficient quantities.

Return type bool or dict

cobra.flux analysis.room

Provide regulatory on/off minimization (ROOM).

Module Contents

Functions
room(model, solution=None, linear=False, Compute a single solution based on regulatory on/off
delta=0.03, epsilon=0.001) minimization (ROOM).

add_room(model, solution=None, linear=False, Add constraints and objective for ROOM.
delta=0.03, epsilon=0.001)

cobra.flux_analysis.room.room (model, solution=None, linear=False, delta=0.03, ep-

silon=0.001)
Compute a single solution based on regulatory on/off minimization (ROOM).

Compute a new flux distribution that minimizes the number of active reactions needed to accommodate a
previous reference solution. Regulatory on/off minimization (ROOM) is generally used to assess the impact
of knock-outs. Thus the typical usage is to provide a wildtype flux distribution as reference and a model in
knock-out state.

Parameters

* model (cobra.Model) — The model state to compute a ROOM-based solution
for.

* solution(cobra.Solution, optional)-A (wildtype) reference solution.

146 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

cobra Documentation, Release 0.18.1

e linear (bool, optional)— Whether to use the linear ROOM formulation or
not (default False).

* delta (float, optional) — The relative tolerance range (additive) (default
0.03).

* epsilon (float, optional)— The absolute tolerance range (multiplicative)
(default 0.001).

Returns A flux distribution with minimal active reaction changes compared to the reference.
Return type cobra.Solution

See also:
add_room () add ROOM constraints and objective

cobra.flux_analysis.room.add_room (model, solution=None, linear=False, delta=0.03, ep-

silon=0.001)
Add constraints and objective for ROOM.

This function adds variables and constraints for applying regulatory on/off minimization (ROOM) to the

model.
Parameters
* model (cobra.Model)— The model to add ROOM constraints and objective to.
* solution (cobra.Solution, optional)— A previous solution to use as a
reference. If no solution is given, one will be computed using pFBA.
e linear (bool, optional)— Whether to use the linear ROOM formulation or
not (default False).
* delta (float, optional) - The relative tolerance range which is additive in
nature (default 0.03).
* epsilon (float, optional) - The absolute range of tolerance which is mul-
tiplicative (default 0.001).
Notes

The formulation used here is the same as stated in the original paper'. The mathematical expression is given
below:

minimize sum_{i=1}"m y*i s.t. Sv=0

vmin<=v<=v_max v_j=0j Afor 1 <=i<=m v_i-y_i(v_{max,i} - w_i"u) <= w_i*u
(1) v_i-y_i(v_{min,i} - w_i*l) <= w_i" (2) y_i {0,1} (3) w_i"u = w_i + deltalw_il + epsilon
w_i" = w_i - deltalw_il - epsilon

So, for the linear version of the ROOM , constraint (3) is relaxed to 0 <=y_i <= 1.

See also:

pfba () parsimonious FBA

! Tomer Shlomi, Omer Berkman and Eytan Ruppin, “Regulatory on/off minimization of metabolic flux changes after genetic perturba-
tions”, PNAS 2005 102 (21) 7695-7700; doi:10.1073/pnas.0406346102

17.1. cobra 147

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

cobra Documentation, Release 0.18.1

References

cobra.flux analysis.variability

Module Contents

Functions
_init_worker(model, loopless, sense) Initialize a global model object for multiprocessing.
_fva_step(reaction_id)
flux_variability_ analysis(model, Determine the minimum and maximum possible flux
reaction_list=None, loopless=False, frac- value for each reaction.

tion_of_optimum=1.0, pfba_factor=None, pro-
cesses=None)

find_blocked reactions(model, Find reactions that cannot carry any flux.
reaction_list=None, zero_cutoff=None,

open_exchanges=False, processes=None)

find_essential_genes(model, thresh- Return a set of essential genes.

old=None, processes=None)
find essential_ reactions(model, thresh- Return a set of essential reactions.
old=None, processes=None)

cobra.flux_analysis.variability.LOGGER
cobra.flux_analysis.variability.CONFIGURATION

cobra.flux_analysis.variability._init_worker (model, loopless, sense)
Initialize a global model object for multiprocessing.

cobra.flux_analysis.variability._£va_step (reaction_id)

cobra.flux_analysis.variability.flux_variability_analysis (model, reac-
tion_list=None,
loop-

less=False, frac-
tion_of _optimum=1.0,
pfba_factor=None,

processes=None)
Determine the minimum and maximum possible flux value for each reaction.

Parameters

* model (cobra.Model) — The model for which to run the analysis. It will not be
modified.

* reaction_list (list of cobra.Reaction or str, optional) —
The reactions for which to obtain min/max fluxes. If None will use all reactions
in the model (default).

* loopless (boolean, optional)— Whether to return only loopless solutions.
This is significantly slower. Please also refer to the notes.

e fraction_of_optimum (float, optional) — Must be <= 1.0. Requires
that the objective value is at least the fraction times maximum objective value. A
value of 0.85 for instance means that the objective has to be at least at 85% percent
of its maximum.

* pfba_factor (float, optional)-— Add an additional constraint to the model
that requires the total sum of absolute fluxes must not be larger than this value times
the smallest possible sum of absolute fluxes, i.e., by setting the value to 1.1 the total
sum of absolute fluxes must not be more than 10% larger than the pFBA solution.

148 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

cobra Documentation, Release 0.18.1

Since the pFBA solution is the one that optimally minimizes the total flux sum, the
pfba_factor should, if set, be larger than one. Setting this value may lead to
more realistic predictions of the effective flux bounds.

* processes (int, optional)- The number of parallel processes to run. If not
explicitly passed, will be set from the global configuration singleton.

Returns A data frame with reaction identifiers as the index and two columns: - maximum:
indicating the highest possible flux - minimum: indicating the lowest possible flux

Return type pandas.DataFrame

Notes

This implements the fast version as described in'. Please note that the flux distribution containing all mini-
mal/maximal fluxes does not have to be a feasible solution for the model. Fluxes are minimized/maximized
individually and a single minimal flux might require all others to be suboptimal.

Using the loopless option will lead to a significant increase in computation time (about a factor of 100 for
large models). However, the algorithm used here (see”) is still more than 1000x faster than the “naive”
version using add_loopless (model). Also note that if you have included constraints that force a loop
(for instance by setting all fluxes in a loop to be non-zero) this loop will be included in the solution.

References

cobra.flux_analysis.variability.find blocked_reactions (model, reac-
tion_list=None,
zero_cutoff=None,
open_exchanges=False,

processes=None)
Find reactions that cannot carry any flux.

The question whether or not a reaction is blocked is highly dependent on the current exchange reaction
settings for a COBRA model. Hence an argument is provided to open all exchange reactions.

Notes

Sink and demand reactions are left untouched. Please modify them manually.

Parameters

model (cobra.Model) — The model to analyze.

e reaction_list (Iist, optional)- Listofreactions to consider, the default
includes all model reactions.

zero_cutoff (float, optional)- Flux value which is considered to effec-
tively be zero (default model.tolerance).

* open_exchanges (bool, optional)— Whether or not to open all exchange
reactions to very high flux ranges.

processes (int, optional) - The number of parallel processes to run. Can
speed up the computations if the number of reactions is large. If not explicitly passed,
it will be set from the global configuration singleton.

Returns List with the identifiers of blocked reactions.

Return type list

! Computationally efficient flux variability analysis. Gudmundsson S, Thiele . BMC Bioinformatics. 2010 Sep 29;11:489. doi:
10.1186/1471-2105-11-489, PMID: 20920235

2 CycleFreeFlux: efficient removal of thermodynamically infeasible loops from flux distributions. Desouki AA, Jarre F, Gelius-Dietrich G,
Lercher MJ. Bioinformatics. 2015 Jul 1;31(13):2159-65. doi: 10.1093/bioinformatics/btv096.

17.1. cobra 149

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

cobra Documentation, Release 0.18.1

cobra.flux_analysis.variability.find_essential_genes (model, threshold=None,

processes=None)
Return a set of essential genes.

A gene is considered essential if restricting the flux of all reactions that depend on it to zero causes the
objective, e.g., the growth rate, to also be zero, below the threshold, or infeasible.

Parameters
* model (cobra.Model)— The model to find the essential genes for.

* threshold (float, optional)-— Minimal objective flux to be considered vi-
able. By default this is 1% of the maximal objective.

* processes (int, optional)- The number of parallel processes to run. If not
passed, will be set to the number of CPUs found.

* processes — The number of parallel processes to run. Can speed up the computa-
tions if the number of knockouts to perform is large. If not explicitly passed, it will
be set from the global configuration singleton.

Returns Set of essential genes
Return type set

cobra.flux_analysis.variability.find essential_reactions (model, thresh-
old=None, pro-

)) cesses=None)
Return a set of essential reactions.

A reaction is considered essential if restricting its flux to zero causes the objective, e.g., the growth rate, to
also be zero, below the threshold, or infeasible.

Parameters
¢ model (cobra.Model) — The model to find the essential reactions for.

* threshold (float, optional)-— Minimal objective flux to be considered vi-
able. By default this is 1% of the maximal objective.

* processes (int, optional)— The number of parallel processes to run. Can
speed up the computations if the number of knockouts to perform is large. If not
explicitly passed, it will be set from the global configuration singleton.

Returns Set of essential reactions

Return type set

Package Contents

Functions

double gene_deletion(model, Knock out each gene pair from the combination of
gene_listI=None, gene_list2=None, method="fba’, two given lists.

solution=None, processes=None, **kwargs)

double_reaction_deletion(model, reac- Knock out each reaction pair from the combinations
tion_list1=None, reaction_list2=None, method="fba’, of two given lists.

solution=None, processes=None, **kwargs)

single_gene_deletion(model, Knock out each gene from a given list.
gene_list=None, method="fba’, solution=None,

processes=None, **kwargs)

Continued on next page

150 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#set

cobra Documentation, Release 0.18.1

Table 34 — continued from previous page

single_reaction_deletion(model, reac-
tion_list=None, method="fba’, solution=None,
processes=None, **kwargs)

Knock out each reaction from a given list.

fastcc(model, flux_threshold=1.0, Check consistency of a metabolic network using
zero_cutoff=None) FASTCC [1]_.
gapfill(model, universal=None, Perform gapfilling on a model.

lower_bound=0.05,
mand_reactions=True,
iterations=1)

penalties=None, de-
exchange_reactions=False,

geometric_fba(model,
max_tries=200, processes=None)

epsilon=1e-06,

Perform geometric FBA to obtain a unique, centered
flux distribution.

loopless_solution(model, fluxes=None)

Convert an existing solution to a loopless one.

add_loopless(model, zero_cutoff=None)

Modify a model so all feasible flux distributions are
loopless.

add_moma(model, solution=None, linear=True)

Add constraints and objective representing for
MOMA.

moma(model, solution=None, linear=True)

Compute a single solution based on (linear) MOMA.

pfba(model, fraction_of_optimum=1.0,
tive=None, reactions=None)

objec-

Perform basic pFBA (parsimonious Enzyme Usage
Flux Balance Analysis)

find blocked reactions(model,
reaction_list=None, zero_cutoff=None,
open_exchanges=False, processes=None)

Find reactions that cannot carry any flux.

find essential_genes(model, thresh- Return a set of essential genes.

old=None, processes=None)

find essential_reactions(model, thresh- Return a set of essential reactions.

old=None, processes=None)

flux_variability_analysis(model, Determine the minimum and maximum possible flux
reaction_list=None, loopless=False, frac- value for each reaction.

tion_of_optimum=1.0, pfba_factor=None, pro-

cesses=None)

production_envelope(model, reactions, objec-
tive=None, carbon_sources=None, points=20, thresh-
old=None)

Calculate the objective value conditioned on all com-
binations of

add_room(model, solution=None, linecar=False,

delta=0.03, epsilon=0.001)

Add constraints and objective for ROOM.

room(model, solution=None, linear=False,

delta=0.03, epsilon=0.001)

Compute a single solution based on regulatory on/off
minimization (ROOM).

cobra.flux_analysis.double_gene_deletion (model, gene_listI=None, gene_list2=None,

method=fba’, solution=None,
cesses=None, **kwargs)

pro-

Knock out each gene pair from the combination of two given lists.

We say ‘pair’ here but the order order does not matter.

Parameters

* model (cobra.Model)— The metabolic model to perform deletions in.

* gene_listl (iterable,

optional) — First iterable of ~“cobra.Gene™"s to be

deleted. If not passed, all the genes from the model are used.

* gene_list2 (iterable,

optional) — Second iterable of ““cobra.Gene s to

be deleted. If not passed, all the genes from the model are used.

* method
room"},

({"fba ",

* solution (cobra.Solution,

"moma n,
optional)— Method used to predict the growth rate.

"linear moma", "room", "linear

optional) — A previous solution to use as a

reference for (linear) MOMA or ROOM.

17.1. cobra

151

cobra Documentation, Release 0.18.1

* processes (int, optional)— The number of parallel processes to run. Can
speed up the computations if the number of knockouts to perform is large. If not
passed, will be set to the number of CPUs found.

* kwargs — Keyword arguments are passed on to underlying simulation functions
such as add_room.

Returns

A representation of all combinations of gene deletions. The columns are ‘growth’ and
‘status’, where

index [frozenset([str])] The gene identifiers that were knocked out.
growth [float] The growth rate of the adjusted model.
status [str] The solution’s status.

Return type pandas.DataFrame

cobra.flux_analysis.double_reaction_deletion (model, reaction_list]=None, re-
action_list2=None, method=fba’,
solution=None, processes=None,
**kwargs)

Knock out each reaction pair from the combinations of two given lists.
We say ‘pair’ here but the order order does not matter.
Parameters

* model (cobra.Model) — The metabolic model to perform deletions in.

e reaction_listl (iterable, optional) - First iterable of ““co-
bra.Reaction™s to be deleted. If not passed, all the reactions from the model
are used.

e reaction_list2 (iterable, optional) - Second iterable of ““co-
bra.Reaction™"s to be deleted. If not passed, all the reactions from the model are
used.

* method ({"fba", "moma", "linear moma", "room", "linear

room"}, optional)- Method used to predict the growth rate.

* solution (cobra.Solution, optional)— A previous solution to use as a
reference for (linear) MOMA or ROOM.

* processes (int, optional)— The number of parallel processes to run. Can
speed up the computations if the number of knockouts to perform is large. If not
passed, will be set to the number of CPUs found.

* kwargs — Keyword arguments are passed on to underlying simulation functions
such as add_room.

Returns

A representation of all combinations of reaction deletions. The columns are ‘growth’ and
‘status’, where

index [frozenset([str])] The reaction identifiers that were knocked out.
growth [float] The growth rate of the adjusted model.
status [str] The solution’s status.

Return type pandas.DataFrame

cobra.flux_analysis.single_gene_deletion (model, gene_list=None, method='fba’, solu-

tion=None, processes=None, **kwargs)
Knock out each gene from a given list.

Parameters

152

Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

cobra Documentation, Release 0.18.1

* model (cobra.Model)— The metabolic model to perform deletions in.

* gene_list (iterable) — cobra.Gene s to be deleted. If not passed, all the
genes from the model are used.

* method ({"fba", "moma", "linear moma", "room", "linear
room"}, optional)-— Method used to predict the growth rate.

e solution (cobra.Solution, optional)— A previous solution to use as a
reference for (linear) MOMA or ROOM.

* processes (int, optional)—- The number of parallel processes to run. Can
speed up the computations if the number of knockouts to perform is large. If not
passed, will be set to the number of CPUs found.

* kwargs — Keyword arguments are passed on to underlying simulation functions
such as add_room.

Returns

A representation of all single gene deletions. The columns are ‘growth’ and ‘status’,
where

index [frozenset([str])] The gene identifier that was knocked out.
growth [float] The growth rate of the adjusted model.

status [str] The solution’s status.

Return type pandas.DataFrame

cobra.flux_analysis.single_reaction_deletion (model, reaction_list=None,

method=fba’, solution=None, pro-
cesses=None, **kwargs)

Knock out each reaction from a given list.

Parameters

* model (cobra.Model) — The metabolic model to perform deletions in.

e reaction_list (iterable, optional)-cobra.Reaction s to be deleted.
If not passed, all the reactions from the model are used.

* method ({"fba", "moma", "linear moma", "room", "linear
room"}, optional)-— Method used to predict the growth rate.

* solution (cobra.Solution, optional)— A previous solution to use as a
reference for (linear) MOMA or ROOM.

* processes (int, optional)— The number of parallel processes to run. Can
speed up the computations if the number of knockouts to perform is large. If not
passed, will be set to the number of CPUs found.

* kwargs — Keyword arguments are passed on to underlying simulation functions
such as add_room.

Returns

A representation of all single reaction deletions. The columns are ‘growth’ and ‘status’,
where

index [frozenset([str])] The reaction identifier that was knocked out.
growth [float] The growth rate of the adjusted model.

status [str] The solution’s status.

Return type pandas.DataFrame

17.1. cobra

153

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

cobra Documentation, Release 0.18.1

cobra.flux_analysis.fastecc (model, flux_threshold=1.0, zero_cutoff=None)
Check consistency of a metabolic network using FASTCC [1]_.

FASTCC (Fast Consistency Check) is an algorithm for rapid and efficient consistency check in metabolic
networks. FASTCC is a pure LP implementation and is low on computation resource demand. FASTCC
also circumvents the problem associated with reversible reactions for the purpose. Given a global model, it
will generate a consistent global model i.e., remove blocked reactions. For more details on FASTCC, please

check [1]_.

Parameters

* model (cobra.Model) — The constraint-based model to operate on.

e flux_threshold (float, optional (default 1.0)) — The flux

threshold to consider.

e zero_cutoff (float, optional)- The cutoff to consider for zero flux (de-

fault model.tolerance).

Returns The consistent constraint-based model.

Return type cobra.Model

Notes

The LP used for FASTCC is like so: maximize: sum_{iinJ} z_i s.t. : z_i in [0, varepsilon] forall i in J, z_i

in mathbb{R}_+

v_igez_ iforalliinJSv=0vinB

References

cobra.flux_analysis.gapfill (model, universal=None, lower_bound=0.05, penalties=None,

demand_reactions=True, exchange_reactions=False, itera-
tions=1)

Perform gapfilling on a model.

See documentation for the class GapFiller.

Parameters

model (cobra.Model) — The model to perform gap filling on.

universal (cobra.Model, None)-— A universal model with reactions that can
be used to complete the model. Only gapfill considering demand and exchange reac-
tions if left missing.

lower_bound (float) — The minimally accepted flux for the objective in the
filled model.

penalties (dict, None)— A dictionary with keys being ‘universal’ (all reac-
tions included in the universal model), ‘exchange’ and ‘demand’ (all additionally
added exchange and demand reactions) for the three reaction types. Can also have
reaction identifiers for reaction specific costs. Defaults are 1, 100 and 1 respectively.

iterations (int)— The number of rounds of gapfilling to perform. For every it-
eration, the penalty for every used reaction increases linearly. This way, the algorithm
is encouraged to search for alternative solutions which may include previously used
reactions. I.e., with enough iterations pathways including 10 steps will eventually be
reported even if the shortest pathway is a single reaction.

exchange_reactions (bool) — Consider adding exchange (uptake) reactions
for all metabolites in the model.

154

Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

* demand_reactions (bool)— Consider adding demand reactions for all metabo-
lites.

Returns list of lists with on set of reactions that completes the model per requested iteration.

Return type iterable

Examples

>>> import cobra.test as ct

>>> from cobra import Model

>>> from cobra.flux_analysis import gapfill

>>> model = ct.create_test_model ("salmonella™)

>>> universal = Model ('universal')

>>> universal.add_reactions (model.reactions.GF6PTA.copy())
>>> model.remove_reactions ([model.reactions.GF6PTA])

>>> gapfill (model, universal)

cobra.flux_analysis.geometric_fba (model, epsilon=1e-06, max_tries=200, pro-

))) cesses=None)
Perform geometric FBA to obtain a unique, centered flux distribution.

Geometric FBA [1]_ formulates the problem as a polyhedron and then solves it by bounding the convex hull
of the polyhedron. The bounding forms a box around the convex hull which reduces with every iteration
and extracts a unique solution in this way.

Parameters
* model (cobra.Model)— The model to perform geometric FBA on.

* epsilon (float, optional) - The convergence tolerance of the model (de-
fault 1E-06).

e max_ tries (int, optional)-Maximum number of iterations (default 200).

* processes (int, optional)- The number of parallel processes to run. If not
explicitly passed, will be set from the global configuration singleton.

Returns The solution object containing all the constraints required for geometric FBA.

Return type cobra.Solution

References
cobra.flux_analysis.loopless_solution (model, fluxes=None)
Convert an existing solution to a loopless one.

Removes as many loops as possible (see Notes). Uses the method from CycleFreeFlux [1]_ and is much
faster than add_loopless and should therefore be the preferred option to get loopless flux distributions.

Parameters
¢ model (cobra.Model) — The model to which to add the constraints.

e fluxes (dict) — A dictionary {rxn_id: flux} that assigns a flux to each reaction.
If not None will use the provided flux values to obtain a close loopless solution.

Returns A solution object containing the fluxes with the least amount of loops possible or
None if the optimization failed (usually happening if the flux distribution in fluxes is
infeasible).

Return type cobra.Solution

17.1. cobra 155

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

cobra Documentation, Release 0.18.1

Notes

The returned flux solution has the following properties:
* it contains the minimal number of loops possible and no loops at all if all flux bounds include zero

« it has an objective value close to the original one and the same objective value id the objective expres-
sion can not form a cycle (which is usually true since it consumes metabolites)

* it has the same exact exchange fluxes as the previous solution

« all fluxes have the same sign (flow in the same direction) as the previous solution

References
cobra.flux_analysis.add_loopless (model, zero_cutoff=None)
Modify a model so all feasible flux distributions are loopless.

In most cases you probably want to use the much faster loopless_solution. May be used in cases where you
want to add complex constraints and objecives (for instance quadratic objectives) to the model afterwards
or use an approximation of Gibbs free energy directions in you model. Adds variables and constraints to
a model which will disallow flux distributions with loops. The used formulation is described in [1]_. This
function will modify your model.

Parameters
* model (cobra.Model) — The model to which to add the constraints.

* zero_cutoff (positive float, optional)— Cutoff used for null space.
Coefficients with an absolute value smaller than zero_cutoff are considered to be zero
(default model.tolerance).

Returns

Return type Nothing

References
cobra.flux_analysis.add_moma (model, solution=None, linear=True)
Add constraints and objective representing for MOMA.
This adds variables and constraints for the minimization of metabolic adjustment (MOMA) to the model.
Parameters
* model (cobra.Model)— The model to add MOMA constraints and objective to.

* solution (cobra.Solution, optional)— A previous solution to use as a
reference. If no solution is given, one will be computed using pFBA.

e linear (bool, optional)—- Whether to use the linear MOMA formulation or
not (default True).

156 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

Notes
In the original MOMA [1]_ specification one looks for the flux distribution of the deletion (v/~d) closest to
the fluxes without the deletion (v). In math this means:
minimize sum_i (vAd_i - v_1)"2 s.t. SvAd =0

Ib_i<=vAd_i<=ub_i
Here, we use a variable transformation v/t := vAd_i - v_i. Substituting and using the fact that Sv = 0 gives:
minimize sum_i (vM_i)*2 s.t. SvAd =0

vM=vArd_i-v_ilb_i<=vAd_i<=ub_i

So basically we just re-center the flux space at the old solution and then find the flux distribution closest to
the new zero (center). This is the same strategy as used in cameo.

In the case of linear MOMA [2]_, we instead minimize sum_i abs(v*t_i). The linear MOMA is typically
significantly faster. Also quadratic MOMA tends to give flux distributions in which all fluxes deviate from
the reference fluxes a little bit whereas linear MOMA tends to give flux distributions where the majority of
fluxes are the same reference with few fluxes deviating a lot (typical effect of L2 norm vs L1 norm).

The former objective function is saved in the optlang solver interface as "moma_old_objective" and
this can be used to immediately extract the value of the former objective after MOMA optimization.

See also:

pfba () parsimonious FBA

References
cobra.flux_analysis.moma (model, solution=None, linear=True)
Compute a single solution based on (linear) MOMA.

Compute a new flux distribution that is at a minimal distance to a previous reference solution. Minimization
of metabolic adjustment (MOMA) is generally used to assess the impact of knock-outs. Thus the typical
usage is to provide a wildtype flux distribution as reference and a model in knock-out state.

Parameters

* model (cobra.Model) — The model state to compute a MOMA-based solution
for.

* solution(cobra.Solution, optional)-A (wildtype) reference solution.

e linear (bool, optional)—- Whether to use the linear MOMA formulation or
not (default True).

Returns A flux distribution that is at a minimal distance compared to the reference solution.
Return type cobra.Solution

See also:
add_moma () add MOMA constraints and objective
cobra.flux_analysis.pfba (model, fraction_of_optimum=1.0, objective=None, reactions=None)

Perform basic pFBA (parsimonious Enzyme Usage Flux Balance Analysis) to minimize total flux.

pFBA [1] adds the minimization of all fluxes the the objective of the model. This approach is motivated by
the idea that high fluxes have a higher enzyme turn-over and that since producing enzymes is costly, the cell
will try to minimize overall flux while still maximizing the original objective function, e.g. the growth rate.

Parameters

* model (cobra.Model) — The model

17.1. cobra 157

https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

* fraction_of_optimum (float, optional) - Fraction of optimum which
must be maintained. The original objective reaction is constrained to be greater than
maximal_value * fraction_of_optimum.

* objective (dict or model.problem.Objective)— A desired objective
to use during optimization in addition to the pFBA objective. Dictionaries (reaction
as key, coefficient as value) can be used for linear objectives.

* reactions (iterable) — List of reactions or reaction identifiers. Implies re-
turn_frame to be true. Only return fluxes for the given reactions. Faster than fetching
all fluxes if only a few are needed.

Returns The solution object to the optimized model with pFBA constraints added.

Return type cobra.Solution

References
cobra.flux_analysis.find_blocked_ reactions (model, reaction_list=None,
zero_cutoff=None,
open_exchanges=False, pro-

)) cesses=None)
Find reactions that cannot carry any flux.

The question whether or not a reaction is blocked is highly dependent on the current exchange reaction
settings for a COBRA model. Hence an argument is provided to open all exchange reactions.

Notes

Sink and demand reactions are left untouched. Please modify them manually.
Parameters
* model (cobra.Model) - The model to analyze.

* reaction_list (Iist, optional)- Listof reactions to consider, the default
includes all model reactions.

zero_cutoff (float, optional)- Flux value which is considered to effec-
tively be zero (default model.tolerance).

* open_exchanges (bool, optional)— Whether or not to open all exchange
reactions to very high flux ranges.

processes (int, optional)— The number of parallel processes to run. Can
speed up the computations if the number of reactions is large. If not explicitly passed,
it will be set from the global configuration singleton.

Returns List with the identifiers of blocked reactions.
Return type list

cobra.flux_analysis.find_essential_genes (model, threshold=None, processes=None)
Return a set of essential genes.

A gene is considered essential if restricting the flux of all reactions that depend on it to zero causes the
objective, e.g., the growth rate, to also be zero, below the threshold, or infeasible.

Parameters
* model (cobra.Model)— The model to find the essential genes for.

* threshold (float, optional)-— Minimal objective flux to be considered vi-
able. By default this is 1% of the maximal objective.

158 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

cobra Documentation, Release 0.18.1

* processes (int, optional)- The number of parallel processes to run. If not
passed, will be set to the number of CPUs found.

* processes — The number of parallel processes to run. Can speed up the computa-
tions if the number of knockouts to perform is large. If not explicitly passed, it will
be set from the global configuration singleton.

Returns Set of essential genes
Return type set

cobra.flux_analysis.find_essential_reactions (model, threshold=None, pro-

)) cesses=None)
Return a set of essential reactions.

A reaction is considered essential if restricting its flux to zero causes the objective, e.g., the growth rate, to
also be zero, below the threshold, or infeasible.

Parameters
¢ model (cobra.Model) — The model to find the essential reactions for.

* threshold (float, optional)-— Minimal objective flux to be considered vi-
able. By default this is 1% of the maximal objective.

* processes (int, optional) - The number of parallel processes to run. Can
speed up the computations if the number of knockouts to perform is large. If not
explicitly passed, it will be set from the global configuration singleton.

Returns Set of essential reactions
Return type set

cobra.flux_analysis.flux variability analysis (model, reaction_list=None,
loopless=False, frac-
tion_of _optimum=1.0,

pfba_factor=None, processes=None)
Determine the minimum and maximum possible flux value for each reaction.

Parameters

* model (cobra.Model) — The model for which to run the analysis. It will not be
modified.

e reaction_list (list of cobra.Reaction or str, optional) —
The reactions for which to obtain min/max fluxes. If None will use all reactions
in the model (default).

* loopless (boolean, optional)— Whether to return only loopless solutions.
This is significantly slower. Please also refer to the notes.

* fraction_of_optimum (float, optional)— Must be <= 1.0. Requires
that the objective value is at least the fraction times maximum objective value. A
value of 0.85 for instance means that the objective has to be at least at 85% percent
of its maximum.

e pfba_factor (float, optional)- Add an additional constraint to the model
that requires the total sum of absolute fluxes must not be larger than this value times
the smallest possible sum of absolute fluxes, i.e., by setting the value to 1.1 the total
sum of absolute fluxes must not be more than 10% larger than the pFBA solution.
Since the pFBA solution is the one that optimally minimizes the total flux sum, the
pfba_factor should, if set, be larger than one. Setting this value may lead to
more realistic predictions of the effective flux bounds.

e processes (int, optional)- The number of parallel processes to run. If not
explicitly passed, will be set from the global configuration singleton.

17.1. cobra 159

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

cobra Documentation, Release 0.18.1

Returns A data frame with reaction identifiers as the index and two columns: - maximum:
indicating the highest possible flux - minimum: indicating the lowest possible flux

Return type pandas.DataFrame

Notes

This implements the fast version as described in [1]_. Please note that the flux distribution contain-
ing all minimal/maximal fluxes does not have to be a feasible solution for the model. Fluxes are mini-
mized/maximized individually and a single minimal flux might require all others to be suboptimal.

Using the loopless option will lead to a significant increase in computation time (about a factor of 100 for
large models). However, the algorithm used here (see [2]_) is still more than 1000x faster than the “naive”
version using add_loopless (model). Also note that if you have included constraints that force a loop
(for instance by setting all fluxes in a loop to be non-zero) this loop will be included in the solution.

References

cobra.flux_analysis.production_envelope (model, reactions, objective=None, car-
bon_sources=None, points=20, thresh-

old=None)
Calculate the objective value conditioned on all combinations of fluxes for a set of chosen reactions

The production envelope can be used to analyze a model’s ability to produce a given compound conditional
on the fluxes for another set of reactions, such as the uptake rates. The model is alternately optimized
with respect to minimizing and maximizing the objective and the obtained fluxes are recorded. Ranges to
compute production is set to the effective bounds, i.e., the minimum / maximum fluxes that can be obtained
given current reaction bounds.

Parameters
* model (cobra.Model)— The model to compute the production envelope for.

e reactions (Iist or string) - A list of reactions, reaction identifiers or a
single reaction.

* objective (string, dict, model.solver.interface.
Objective, optional) — The objective (reaction) to use for the production
envelope. Use the model’s current objective if left missing.

* carbon_sources (list or string, optional)- One or more reactions
or reaction identifiers that are the source of carbon for computing carbon (mol carbon
in output over mol carbon in input) and mass yield (gram product over gram output).
Only objectives with a carbon containing input and output metabolite is supported.
Will identify active carbon sources in the medium if none are specified.

* points (int, optional)- The number of points to calculate production for.

e threshold (float, optional)— A cut-off under which flux values will be
considered to be zero (default model.tolerance).

Returns
A data frame with one row per evaluated point and
* reaction id : one column per input reaction indicating the flux at each given point,
* carbon_source: identifiers of carbon exchange reactions
A column for the maximum and minimum each for the following types:
* flux: the objective flux

* carbon_yield: if carbon source is defined and the product is a single metabolite (mol
carbon product per mol carbon feeding source)

160 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

cobra Documentation, Release 0.18.1

mass_yield: if carbon source is defined and the product is a single metabolite (gram
product per 1 g of feeding source)

Return type pandas.DataFrame

Examples

>>>
>>>
>>>
>>>

import cobra.test
from cobra.flux analysis import production_envelope

model =

cobra.test.create_test_model ("textbook™)

production_envelope (model, ["EX_glc_ D _e", "EX o02_e"])

cobra.flux_analysis.add_room(model, solution=None, linear=False, delta=0.03, ep-

silon=0.001)

Add constraints and objective for ROOM.

This function adds variables and constraints for applying regulatory on/off minimization (ROOM) to the

model.
Parameters
* model (cobra.Model)— The model to add ROOM constraints and objective to.
* solution (cobra.Solution, optional)— A previous solution to use as a
reference. If no solution is given, one will be computed using pFBA.
e linear (bool, optional)— Whether to use the linear ROOM formulation or
not (default False).
* delta (float, optional) - The relative tolerance range which is additive in
nature (default 0.03).
* epsilon (float, optional) - The absolute range of tolerance which is mul-
tiplicative (default 0.001).
Notes

The formulation used here is the same as stated in the original paper [1]_. The mathematical expression is
given below:

minimize sum_{i=1}"m y*i s.t. Sv=0

v_min<=v<=v_maxv_j=0j Aforl <=i<=m v_i-y_i(v_{max,i} - w_i"u) <= w_i"u
(1) v_i-y_i(v_{min,i} - w_i") <= w_i"l (2) y_i {0,1} (3) w_i"u = w_i + deltalw_il + epsilon
w_i" = w_i - deltalw_il - epsilon

So, for the linear version of the ROOM , constraint (3) is relaxed to 0 <=y_i <= 1.

See also:

pfba () parsimonious FBA

17.1. cobra

161

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

cobra Documentation, Release 0.18.1

References

cobra.flux_analysis.room (model, solution=None, linear="False, delta=0.03, epsilon=0.001)
Compute a single solution based on regulatory on/off minimization (ROOM).

Compute a new flux distribution that minimizes the number of active reactions needed to accommodate a
previous reference solution. Regulatory on/off minimization (ROOM) is generally used to assess the impact
of knock-outs. Thus the typical usage is to provide a wildtype flux distribution as reference and a model in
knock-out state.

Parameters

* model (cobra.Model) — The model state to compute a ROOM-based solution

for.
* solution (cobra.Solution, optional)-— A (wildtype) reference solution.

e linear (bool,
not (default False).

optional) — Whether to use the linear ROOM formulation or

e delta (float,
0.03).

optional) — The relative tolerance range (additive) (default

* epsilon (float,
(default 0.001).

optional) — The absolute tolerance range (multiplicative)

Returns A flux distribution with minimal active reaction changes compared to the reference.
Return type cobra.Solution

See also:

add_room () add ROOM constraints and objective
cobra.io
Submodules
cobra.jio.dict
Module Contents

Functions

_ fix_type(value)

convert possible types to str, float, and bool

_update_optional(cobra_object, new_dict, op-
tional_attribute_dict, ordered_keys)

update new_dict with optional attributes from co-
bra_object

metabolite to_dict(metabolite)

metabolite from dict(metabolite)

gene_to_dict(gene)

gene_from_dict(gene)

reaction_to_dict(reaction)

reaction_from_ dict(reaction, model)

model_to_dict(model, sort=False)

Convert model to a dict.

model_from_dict(obj)

Build a model from a dict.

cobra.io.dict._REQUIRED_ REACTION_ATTRIBUTES =

cobra.io.dict._ORDERED_OPTIONAL REACTION_KEYS =

['id', 'name', 'metabolites', 'lower_ bounc

['objective_coefficient', 'subsystem',6 '

cobra.io.dict._OPTIONAL_REACTION_ATTRIBUTES

162

Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

cobra Documentation, Release 0.18.1

cobra.io.dict._REQUIRED_METABOLITE_ATTRIBUTES = ['id', 'name', 'compartment']

cobra.io.dict._ORDERED_OPTIONAL METABOLITE_KEYS = ['charge', 'formula',
cobra.io.dict._OPTIONAL_ METABOLITE_ATTRIBUTES
cobra.io.dict._REQUIRED_GENE_ATTRIBUTES = ['id', 'name']
cobra.io.dict._ORDERED_OPTIONAL GENE_KEYS = ['notes', 'annotation']

cobra.io.dict._OPTIONAL_GENE_ ATTRIBUTES

cobra.io.dict._ORDERED_OPTIONAL MODEL_KEYS = ['name',K 'compartments', 'notes',

cobra.io.dict._OPTIONAL_MODEL ATTRIBUTES

cobra.io.dict._£fix_type (value)
convert possible types to str, float, and bool

cobra.io.dict._update_optional (cobra_object, new_dict, optional_attribute_dict, or-

dered_keys)
update new_dict with optional attributes from cobra_object

cobra.io.dict.metabolite_to_dict (metabolite)
cobra.io.dict.metabolite_from dict (metabolite)
cobra.io.dict.gene_to_dict (gene)
cobra.io.dict.gene_from_dict (gene)
cobra.io.dict.reaction_to_dict (reaction)
cobra.io.dict.reaction from_ dict (reaction, model)

cobra.io.dict.model_to_dict (model, sort=False)
Convert model to a dict.

Parameters
¢ model (cobra.Model) — The model to reformulate as a dict.

* sort (bool, optional)— Whether to sort the metabolites, reactions, and genes
or maintain the order defined in the model.

Returns A dictionary with elements, ‘genes’, ‘compartments’, ‘id’, ‘metabolites’, ‘notes’ and
‘reactions’; where ‘metabolites’, ‘genes’ and ‘metabolites’ are in turn lists with dictionar-
ies holding all attributes to form the corresponding object.

Return type OrderedDict
See also:
cobra.io.model_ from dict ()

cobra.io.dict.model_from_dict (obj)
Build a model from a dict.

Models stored in json are first formulated as a dict that can be read to cobra model using this function.

Parameters obj (dict) — A dictionary with elements, ‘genes’, ‘compartments’, ‘id’,
‘metabolites’, ‘notes’ and ‘reactions’; where ‘metabolites’, ‘genes’ and ‘metabolites’ are
in turn lists with dictionaries holding all attributes to form the corresponding object.

Returns The generated model.
Return type cora.core.Model
See also:

cobra.io.model_to_dict ()

' _bound',

17.1. cobra

'notes

'annotati

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

cobra Documentation, Release 0.18.1

cobra.io. json

Module Contents

Functions
to_ json(model, sort=False, **kwargs) Return the model as a JSON document.
from_json(document) Load a cobra model from a JSON document.

save_json_model(model, filename, sort=False, Write the cobra model to a file in JSON format.

pretty=False, **kwargs)
load_json_model(filename) Load a cobra model from a file in JSON format.

cobra.io.json.JSON_SPEC = 1

cobra.io. json.to_json (model, sort=False, **kwargs)
Return the model as a JSON document.

kwargs are passed on to json.dumps.
Parameters
* model (cobra.Model) — The cobra model to represent.

* sort (bool, optional)- Whether to sort the metabolites, reactions, and genes
or maintain the order defined in the model.

Returns String representation of the cobra model as a JSON document.
Return type str

See also:

save_json_model () Write directly to a file.
json.dumps () Base function.
cobra.io.json.from_json (document)
Load a cobra model from a JSON document.
Parameters document (st r)— The JSON document representation of a cobra model.
Returns The cobra model as represented in the JSON document.
Return type cobra.Model
See also:
load json_model () Load directly from a file.
cobra.io.json.save_json_model (model, filename, sort=False, pretty=False, **kwargs)
Write the cobra model to a file in JSON format.
kwargs are passed on to json . dump.
Parameters
* model (cobra.Model)— The cobra model to represent.

e filename (str or file-1ike)- File path or descriptor that the JSON repre-
sentation should be written to.

* sort (bool, optional)- Whether to sort the metabolites, reactions, and genes
or maintain the order defined in the model.

164 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/json.html#json.dumps
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

* pretty (bool,

optional)— Whether to format the JSON more compactly (de-

fault) or in a more verbose but easier to read fashion. Can be partially overwritten by

the kwargs.

See also:

to_json () Return a string representation.

json.dump () Base function.

cobra.io.json.load_json_model (filename)
Load a cobra model from a file in JSON format.

Parameters filename (str or file-1ike) — File path or descriptor that contains the
JSON document describing the cobra model.

Returns The cobra model as represented in the JSON document.

Return type cobra.Model

See also:

from json () Load from a string.
cobra.io. json. json_schema
cobra.io.mat
Module Contents

Functions

_get_1id compartment(id)

extract the compartment from the id string

_cell(x)

translate an array x into a MATLAB cell array

load_matlab_model(infile_path, vari- Load a cobra model stored as a .mat file
able_name=None, inf=inf)
save_matlab_model(model, file_name, var- Save the cobra model as a .mat file.

name=None)

create _mat_metabolite id(model)

create_mat_dict(model)

create a dict mapping model attributes to arrays

from mat_ struct(mat_struct, model_id=None,

inf=inf)

create a model from the COBRA toolbox struct

_ check(result)

ensure success of a pymatbridge operation

model_to_pymatbridge(model, vari-

able_name="model’, matlab=None)

send the model to a MATLAB workspace through py-
matbridge

cobra.io.mat.scipy_sparse

cobra.io.mat._bracket_re
cobra.io.mat._underscore_re

cobra.io.mat._get_id_compartment (id)
extract the compartment from the id string

cobra.io.mat._cell (x)
translate an array x into a MATLAB cell array

cobra.io.mat.load_matlab_model (infile_path, variable_name=None, inf=inf)

Load a cobra model stored as a .mat file

17.1. cobra

165

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/json.html#json.dump
https://docs.python.org/3/library/stdtypes.html#str

cobra Documentation, Release 0.18.1

Parameters
* infile path (str)— path to the file to to read

* variable_name (str, optional) — The variable name of the model in the
.mat file. If this is not specified, then the first MATLAB variable which looks like a
COBRA model will be used

e inf (value) — The value to use for infinite bounds. Some solvers do not handle
infinite values so for using those, set this to a high numeric value.

Returns The resulting cobra model
Return type cobra.core.Model.Model

cobra.io.mat.save_matlab_model (model, file_name, varname=None)
Save the cobra model as a .mat file.

This .mat file can be used directly in the MATLAB version of COBRA.
Parameters
* model (cobra.core.Model.Model object)— The model to save
e file_name (str or file-like object)— The file to save to
* varname (string)— The name of the variable within the workspace
cobra.io.mat.create _mat_metabolite_id (model)

cobra.io.mat.create_mat_dict (model)
create a dict mapping model attributes to arrays

cobra.io.mat.from_mat_struct (mat_struct, model_id=None, inf=inf)
create a model from the COBRA toolbox struct

The struct will be a dict read in by scipy.io.loadmat

cobra.io.mat._check (result)
ensure success of a pymatbridge operation

cobra.io.mat.model_to_pymatbridge (model, variable_name='model’, matlab=None)
send the model to a MATLAB workspace through pymatbridge

This model can then be manipulated through the COBRA toolbox
Parameters

* variable_name (st r) — The variable name to which the model will be assigned
in the MATLAB workspace

* matlab (None or pymatbridge.Matlab instance) — The MATLAB
workspace to which the variable will be sent. If this is None, then this will be sent to
the same environment used in IPython magics.

cobra.io.sbml

SBML import and export using python-libsbml.
* The SBML importer supports all versions of SBML and the fbc package.
* The SBML exporter writes SBML L3 models.
¢ Annotation information is stored on the cobrapy objects
¢ Information from the group package is read

Parsing of fbc models was implemented as efficient as possible, whereas (discouraged) fallback solutions are not
optimized for efficiency.

166 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

cobra Documentation, Release 0.18.1

Notes are only supported in a minimal way relevant for constraint-based models. I.e., structured information from

notes in the form

<p>key: value</p>

is read into the Object.notes dictionary when reading SBML files. On writing the Object.notes dictionary is

serialized to the SBML notes information.

Annotations are read in the Object.annotation fields.

Some SBML related issues are still open, please refer to the respective issue: - update annotation format and

support qualifiers (depends on decision

for new annotation format; https://github.com/opencobra/cobrapy/issues/684)

e write compartment annotations and notes (depends on updated first-class compartments; see https://

github.com/opencobra/cobrapy/issues/760)

* support compression on file handles (depends on solution for https://github.com/opencobra/cobrapy/

issues/812)

Module Contents

Functions

_escape_non_alphanum(nonASCII)

converts a non alphanumeric character to a string rep-
resentation of

_number_to_chr(numberStr)

converts an ascii number to a character

__c1ip(sid, prefix)

Clips a prefix from the beginning of a string if it exists.

_f_gene(sid, prefix="G_’")

Clips gene prefix from id.

_f gene_rev(sid, prefix="G_")

Adds gene prefix to id.

_f_specie(sid, prefix="M_")

Clips specie/metabolite prefix from id.

_f specie_rev(sid, prefix="M_")

Adds specie/metabolite prefix to id.

_f_reaction(sid, prefix="R_")

Clips reaction prefix from id.

_f reaction_rev(sid, prefix="R_")

Adds reaction prefix to id.

_f_group(sid, prefix="G_")

Clips group prefix from id.

_f group_rev(sid, prefix="G_’)

Adds group prefix to id.

read_sbml_model(filename, number=float,

f_replace=F_REPLACE, **kwargs)

Reads SBML model from given filename.

_get_doc_from_filename(filename)

Get SBMLDocument from given filename.

_shbml_to _model(doc, number=float,
f_replace=F_REPLACE, set_missing_bounds=False,
**kwargs)

Creates cobra model from SBMLDocument.

write_sbml_model(cobra_model, filename,

f_replace=F_REPLACE, **kwargs)

Werites cobra model to filename.

_model_to_sbml(cobra_model, f_replace=None,
units=True)

Convert Cobra model to SBMLDocument.

_create_bound(model, reaction, bound_type,

f_replace, units=None, flux_udef=None)

Creates bound in model for given reaction.

_create_parameter(model, pid, value,
sbo=None, constant=True, units=None,
flux_udef=None)

Create parameter in SBML model.

__check_required(sbase, value, attribute)

Get required attribute from SBase.

__check(value, message)

Checks the libsbml return value and logs error mes-
sages.

_parse_notes_dict(sbase)

Creates dictionary of COBRA notes.

_sbase_notes_dict(sbase, notes)

Set SBase notes based on dictionary.

_parse_annotat ions(sbase)

Parses cobra annotations from a given SBase object.

Continued on next page

17.1. cobra

167

https://github.com/opencobra/cobrapy/issues/684
https://github.com/opencobra/cobrapy/issues/760
https://github.com/opencobra/cobrapy/issues/760
https://github.com/opencobra/cobrapy/issues/812
https://github.com/opencobra/cobrapy/issues/812

cobra Documentation, Release 0.18.1

Table 38 — continued from previous page

_parse_annotation_info(uri)

Parses provider and term from given identifiers anno-
tation uri.

_sbase_annotat ions(sbase, annotation)

Set SBase annotations based on cobra annotations.

validate sbml_model(filename,

Validate SBML model and returns the model along

check _model=True, internal_consistency=True, with a list of errors.
check_units_consistency=False,
check_modeling_practice=False, **kwargs)

_error_string(error, k=None)

String representation of SBMLError.

exception cobra.io.sbml.CobraSBMLError
Bases: Exception

SBML error class.
cobra.io.sbml.LOGGER
cobra.io.sbml.config
cobra.io.sbml.LOWER_BOUND_ID = cobra_default_lb
cobra.io.sbml.UPPER_BOUND_ID = cobra_default_ ub
cobra.io.sbml.ZERO_BOUND ID = cobra 0 _bound
cobra.io.sbml.BOUND_MINUS_INF = minus_inf
cobra.io.sbml.BOUND_PLUS_INF = plus_inf
cobra.io.sbml.SBO_FBA FRAMEWORK = SBO:0000624
cobra.io.sbml.SBO_DEFAULT_ FLUX BOUND = SB0O:0000626
cobra.io.sbml.SBO_FLUX BOUND = SBO:0000625
cobra.io.sbml.SBO_EXCHANGE REACTION = SBO:0000627
cobra.io.sbml.LONG_SHORT_DIRECTION
cobra.io.sbml.SHORT_LONG_DIRECTION
cobra.io.sbml.Unit
cobra.io.sbml.UNITS_FLUX = ['mmol_per gDW_per_hr', None]
cobra.io.sbml.SBML_DOT = _ SBML_DOT
cobra.io.sbml.pattern_notes
cobra.io.sbml.pattern_to_sbml
cobra.io.sbml.pattern_from_sbml
cobra.io.sbml._escape_non_alphanum (nonASCII)

converts a non alphanumeric character to a string representation of its ascii number

cobra.io.sbml. number to_chr (numberStr)
converts an ascii number to a character

cobra.io.sbml._clip (sid, prefix)
Clips a prefix from the beginning of a string if it exists.

cobra.io.sbml._f£ gene (sid, prefix='"G_")
Clips gene prefix from id.

cobra.io.sbml._f£f gene_rev (sid, prefix="'G_')
Adds gene prefix to id.

cobra.io.sbml._f£_ specie (sid, prefix="M_")
Clips specie/metabolite prefix from id.

168 Chapter 17. API Reference

https://docs.python.org/3/library/exceptions.html#Exception

cobra Documentation, Release 0.18.1

cobra.io.sbml._f£f_ specie_rev (sid, prefix="M_")
Adds specie/metabolite prefix to id.

cobra.io.sbml._f£f reaction (sid, prefix="R_’)
Clips reaction prefix from id.

cobra.io.sbml._f£f reaction_rev (sid, prefix='R_')
Adds reaction prefix to id.

cobra.io.sbml._f£ group (sid, prefix='G_")
Clips group prefix from id.

cobra.io.sbml._£_ group_rev (sid, prefix='G_')
Adds group prefix to id.

cobra.io.sbml.F_GENE = F_GENE
cobra.io.sbml.F_GENE_REV = F_GENE_REV
cobra.io.sbml.F_SPECIE = F_SPECIE
cobra.io.sbml.F_SPECIE REV = F_SPECIE_REV
cobra.io.sbml.F_REACTION = F_REACTION
cobra.io.sbml.F_REACTION REV = F_REACTION_ REV
cobra.io.sbml.F_GROUP = F_GROUP
cobra.io.sbml.F_GROUP_REV = F_GROUP_REV
cobra.io.sbml.F_REPLACE

cobra.io.sbml.read_sbml_model (filename, number=float, f_replace=F_REPLACE, **kwargs)
Reads SBML model from given filename.

I3

If the given filename ends with the suffix

.gz” (for example, “myfile.xml.gz’),” the file is assumed to

be compressed in gzip format and will be automatically decompressed upon reading. Similarly, if the
given filename ends with “’.zip” or “.bz2’, the file is assumed to be compressed in zip or bzip2 format
(respectively). Files whose names lack these suffixes will be read uncompressed. Note that if the file is in
zip format but the archive contains more than one file, only the first file in the archive will be read and the

rest ignored.

To read a gzip/zip file, libSBML needs to be configured and linked with the zlib library at compile time. It
also needs to be linked with the bzip2 library to read files in bzip2 format. (Both of these are the default

configurations for libSBML.)

This function supports SBML with FBC-v1 and FBC-v2. FBC-v1 models are converted to FBC-v2 models

before reading.

The parser tries to fall back to information in notes dictionaries if information is not available in the FBC
packages, e.g., CHARGE, FORMULA on species, or GENE_ASSOCIATION, SUBSYSTEM on reactions.

Parameters

e filename (path to SBML file, or SBML string, or SBML file
handle)— SBML which is read into cobra model

e number (data type of stoichiometry: {float, int}) — In which
data type should the stoichiometry be parsed.

e f replace (dict of replacement functions for id
replacement) — Dictionary of replacement functions for gene, specie, and
reaction. By default the following id changes are performed on import: clip G_ from
genes, clip M_ from species, clip R_ from reactions If no replacements should be
performed, set f_replace={}, None

Returns

Return type cobra.core.Model

17.1. cobra

169

cobra Documentation, Release 0.18.1

Notes

Provided file handles cannot be opened in binary mode, i.e., use

with open(path, “r”’ as f): read_sbml_model(f)

File handles to compressed files are not supported yet.

cobra.io.sbml._get_doc_from filename (filename)
Get SBMLDocument from given filename.

Parameters filename (path to SBML, or SBML string, or filehandle)-—
Returns
Return type libsbml.SBMLDocument

cobra.io.sbml. sbml to_model (doc, number=float, f_replace=F_REPLACE,

set_missing_bounds=False, **kwargs)
Creates cobra model from SBMLDocument.

Parameters
* doc (1ibsbml.SBMLDocument) —

e number (data type of stoichiometry: {float, int}) — In which
data type should the stoichiometry be parsed.

* f replace (dict of replacement functions for id
replacement)—

* set_missing _bounds (flag to set missing bounds)—
Returns
Return type cobra.core.Model

cobra.io.sbml.write_ sbml_model (cobra_model, filename, f_replace=F_REPLACE,

**kwargs)
Writes cobra model to filename.

The created model is SBML level 3 version 1 (L1V3) with fbc package v2 (fbc-v2).

If the given filename ends with the suffix “.gz” (for example, “myfile.xml.gz”), libSBML assumes the caller
wants the file to be written compressed in gzip format. Similarly, if the given filename ends with “.zip”
or “.bz2”, libSBML assumes the caller wants the file to be compressed in zip or bzip2 format (respec-
tively). Files whose names lack these suffixes will be written uncompressed. Special considerations for
the zip format: If the given filename ends with “.zip”, the file placed in the zip archive will have the suffix
“.xml” or “.sbml”. For example, the file in the zip archive will be named “test.xml” if the given filename is
“test.xml.zip” or “test.zip”. Similarly, the filename in the archive will be “test.sbml” if the given filename is
“test.sbml.zip”.

Parameters

* cobra_model (cobra.core.Model) — Model instance which is written to
SBML

* filename (string) — path to which the model is written

e f replace (dict of replacement functions for id
replacement)—

cobra.io.sbml._model_to_sbml (cobra_model, f replace=None, units=True)
Convert Cobra model to SBMLDocument.

Parameters

* cobra_model (cobra.core.Model)— Cobra model instance

170 Chapter 17. API Reference

cobra Documentation, Release 0.18.1

* f replace (dict of replacement functions)— Replacement to apply
on identifiers.

e units (boolean) - Should the FLUX_UNITS be written in the SBMLDocument.
Returns
Return type libsbml.SBMLDocument

cobra.io.sbml._create_bound (model, reaction, bound _type, f_replace, units=None,
Sflux_udef=None)
Creates bound in model for given reaction.

Adds the parameters for the bounds to the SBML model.
Parameters
* model (Iibsbml.Model)— SBML model instance

e reaction (cobra.core.Reaction)— Cobra reaction instance from which the
bounds are read.

* bound_type ({ LOWER_BOUND, UPPER_BOUND }) - Type of bound
e £ replace (dict of id replacement functions)-—
e units (flux units)-—

Returns

Return type Id of bound parameter.

cobra.io.sbml._create_parameter (model, pid, value, sho=None, constant=True, units=None,

flux_udef=None)
Create parameter in SBML model.

cobra.io.sbml._check_required (shase, value, attribute)
Get required attribute from SBase.

Parameters

* sbase (I1ibsbml.SBase)—

e value (existing value)—

e attribute (name of attribute)-
Returns
Return type attribute value (or value if already set)

cobra.io.sbml._check (value, message)
Checks the libsbml return value and logs error messages.

If ‘value’ is None, logs an error message constructed using ‘message’ and then exits with status code 1.
If ‘value’ is an integer, it assumes it is a libSBML return status code. If the code value is LIBS-
BML_OPERATION_SUCCESS, returns without further action; if it is not, prints an error message
constructed using ‘message’ along with text from libSBML explaining the meaning of the code, and
exits with status code 1.

cobra.io.sbml._parse_notes_dict (sbase)
Creates dictionary of COBRA notes.

Parameters sbase (1ibsbml.SBase)—
Returns
Return type dict of notes

cobra.io.sbml._sbase_notes_dict (sbase, notes)
Set SBase notes based on dictionary.

Parameters

17.1. cobra 171

cobra Documentation, Release 0.18.1

* sbase (1ibsbml.SBase)— SBML object to set notes on

* notes (notes object)— notes information from cobra object
cobra.io.sbml.URL_IDENTIFIERS_ PATTERN
cobra.io.sbml.URL_IDENTIFIERS PREFIX = https://identifiers.org
cobra.io.sbml.QUALIFIER_TYPES

cobra.io.sbml._parse_annotations (shase)
Parses cobra annotations from a given SBase object.

Annotations are dictionaries with the providers as keys.
Parameters sbase (1ibsbml.SBase)— SBase from which the SBML annotations are read
Returns
* dict (annotation dictionary)

¢ FIXME (annotation format must be updated (this is a big collection of) — fixes) -
see: https://github.com/opencobra/cobrapy/issues/684)

cobra.io.sbml._parse_annotation_info (uri)
Parses provider and term from given identifiers annotation uri.

Parameters uri (str)—uri (identifiers.org url)
Returns
Return type (provider, identifier) if resolvable, None otherwise

cobra.io.sbml. sbase annotations (sbase, annotation)
Set SBase annotations based on cobra annotations.

Parameters
* sbase (1ibsbml.SBase)—- SBML object to annotate

* annotation (cobra annotation structure)— cobra object with annota-
tion information

e FIXME (annotation format must be updated) — (https://github.com/
opencobra/cobrapy/issues/684)

cobra.io.sbml.validate_sbml_model (filename, check_model=True, inter-
nal_consistency=True, check_units_consistency=False,

check_modeling_practice=False, **kwargs)
Validate SBML model and returns the model along with a list of errors.

Parameters

e filename (str)— The filename (or SBML string) of the SBML model to be vali-
dated.

* internal_consistency (boolean {True, False}) — Check internal
consistency.

* check_units_consistency (boolean {True, False})-Check consis-
tency of units.

* check_modeling practice (boolean {True, False})— Check mod-
eling practise.

¢ check_model (boolean {True, False})— Whether to also check some ba-
sic model properties such as reaction boundaries and compartment formulas.

Returns

e (model, errors)

172 Chapter 17. API Reference

https://github.com/opencobra/cobrapy/issues/684
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/opencobra/cobrapy/issues/684
https://github.com/opencobra/cobrapy/issues/684
https://docs.python.org/3/library/stdtypes.html#str

cobra Documentation, Release 0.18.1

* model (Model object) — The cobra model if the file could be read successfully or
None otherwise.

* errors (dict) — Warnings and errors grouped by their respective types.
Raises CobraSBMLError —

cobra.io.sbml._error_string (error, k=None)
String representation of SBMLError.

Parameters
* error (libsbml.SBMLError) —
* k(index of error)-—

Returns

Return type string representation of error

cobra.io.yaml

Module Contents

Classes
My YAML

Functions
to_yaml(model, sort=False, **kwargs) Return the model as a YAML document.
from_yaml(document) Load a cobra model from a YAML document.

save_yaml_model(model, filename, sort=False, Write the cobra model to a file in YAML format.
**kwargs)

load_ yaml_modeI(filename) Load a cobra model from a file in YAML format.

cobra.io.yaml.YAML_SPEC = 1.2

class cobra.io.yaml.MyYAML (: Any, ¥ typ: Optional[Text] = None, pure: Any = False, output:
Any = None, plug_ins: Any = None)
Bases: ruamel.yaml.main.YAML

dump (self, data, stream=None, **kwargs)
cobra.io.yaml.yaml

cobra.io.yaml.to_yaml (model, sort=False, **kwargs)
Return the model as a YAML document.

kwargs are passed on to yaml . dump.
Parameters
* model (cobra.Model) — The cobra model to represent.

* sort (bool, optional)— Whether to sort the metabolites, reactions, and genes
or maintain the order defined in the model.

Returns String representation of the cobra model as a YAML document.
Return type str

See also:

17.1. cobra

173

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

cobra Documentation, Release 0.18.1

save _yaml_model () Write directly to a file.
ruamel.yaml.dump () Base function.
cobra.io.yaml.from yaml (document)
Load a cobra model from a YAML document.
Parameters document (st r)— The YAML document representation of a cobra model.
Returns The cobra model as represented in the YAML document.
Return type cobra.Model

See also:
load _yaml _model () Load directly from a file.
cobra.io.yaml.save_yaml_model (model, filename, sort=False, **kwargs)
Write the cobra model to a file in YAML format.
kwargs are passed on to yaml . dump.
Parameters
* model (cobra.Model) — The cobra model to represent.

e filename (str or file-1ike)— File path or descriptor that the YAML rep-
resentation should be written to.

* sort (bool, optional)— Whether to sort the metabolites, reactions, and genes
or maintain the order defined in the model.

See also:

to_yaml () Return a string representation.

ruamel.yaml.dump () Base function.
cobra.io.yaml.load_yaml_model (filename)

Load a cobra model from a file in YAML format.

Parameters filename (str or file-like) — File path or descriptor that contains the
YAML document describing the cobra model.

Returns The cobra model as represented in the YAML document.
Return type cobra.Model

See also:

from_yaml () Load from a string.

Package Contents

Functions

model_from_ dict(obj)

Build a model from a dict.

model_to_dict(model, sort=False)

Convert model to a dict.

from_json(document)

Load a cobra model from a JSON document.

load_json_modeI(filename)

Load a cobra model from a file in JSON format.

save_json_model(model, filename, sort=False,
pretty=False, **kwargs)

Werite the cobra model to a file in JSON format.

to_ json(model, sort=False, **kwargs)

Return the model as a JSON document.

Continued on next page

174

Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

cobra Documentation, Release 0.18.1

Table 41 — continued from previous page

load_matlab_model(infile_path, vari- Load a cobra model stored as a .mat file
able_name=None, inf=inf)
save_matlab_model(model, file_name, var- Save the cobra model as a .mat file.

name=None)

read_sbml_model(filename, number=float,

f_replace=F_REPLACE, **kwargs)

Reads SBML model from given filename.

write_sbml_model(cobra_model, filename,

f_replace=F_REPLACE, **kwargs)

Writes cobra model to filename.

validate sbml_model(filename,
check_model=True, internal_consistency=True,
check_units_consistency=False,
check_modeling_practice=False, **kwargs)

Validate SBML model and returns the model along
with a list of errors.

from_yaml(document)

Load a cobra model from a YAML document.

load_yaml_model(filename)

Load a cobra model from a file in YAML format.

save_yaml_model(model, filename, sort=False,
**kwargs)

Write the cobra model to a file in YAML format.

to_yaml(model, sort=False, **kwargs)

Return the model as a YAML document.

cobra.io.model_from_dict (obj)
Build a model from a dict.

Models stored in json are first formulated as a dict that can be read to cobra model using this function.

Parameters obj (dict) — A dictionary with elements, ‘genes’, ‘compartments’, ‘id’,
‘metabolites’, ‘notes’ and ‘reactions’; where ‘metabolites’, ‘genes’ and ‘metabolites’ are
in turn lists with dictionaries holding all attributes to form the corresponding object.

Returns The generated model.

Return type cora.core.Model
See also:
cobra.io.model_to_dict ()

cobra.io.model_to_dict (model, sort=False)
Convert model to a dict.

Parameters

¢ model (cobra.Model) — The model to reformulate as a dict.

e sort (bool,

optional)— Whether to sort the metabolites, reactions, and genes

or maintain the order defined in the model.

Returns A dictionary with elements, ‘genes’, ‘compartments’, ‘id’, ‘metabolites’, ‘notes’ and
‘reactions’; where ‘metabolites’, ‘genes’ and ‘metabolites’ are in turn lists with dictionar-
ies holding all attributes to form the corresponding object.

Return type OrderedDict
See also:
cobra.io.model_ from dict ()

cobra.io.from_json (document)
Load a cobra model from a JSON document.

Parameters document (st r)— The JSON document representation of a cobra model.

Returns The cobra model as represented in the JSON document.

Return type cobra.Model

See also:

17.1. cobra

175

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

cobra Documentation, Release 0.18.1

load json _model () Load directly from a file.
cobra.io.load json_model (filename)
Load a cobra model from a file in JSON format.

Parameters filename (str or file-1ike)— File path or descriptor that contains the
JSON document describing the cobra model.

Returns The cobra model as represented in the JSON document.

Return type cobra.Model
See also:
from_json () Load from a string.

cobra.io.save_json_model (model, filename, sort=False, pretty=False, **kwargs)

Write the cobra model to a file in JSON format.
kwargs are passed on to json . dump.

Parameters

* model (cobra.Model) — The cobra model to represent.

e filename (str or file-1ike)- File path or descriptor that the JSON repre-
sentation should be written to.

* sort (bool, optional)— Whether to sort the metabolites, reactions, and genes
or maintain the order defined in the model.

pretty (bool, optional)-— Whether to format the JSON more compactly (de-
fault) or in a more verbose but easier to read fashion. Can be partially overwritten by
the kwargs.

See also:

to_json () Return a string representation.
json.dump () Base function.
cobra.io.to_json (model, sort=False, **kwargs)
Return the model as a JSON document.
kwargs are passed on to json.dumps.
Parameters
* model (cobra.Model) — The cobra model to represent.

* sort (bool, optional)- Whether to sort the metabolites, reactions, and genes
or maintain the order defined in the model.

Returns String representation of the cobra model as a JSON document.
Return type str

See also:

save_json_model () Write directly to a file.
json.dumps () Base function.
cobra.io.load_matlab_model (infile_path, variable_name=None, inf=inf)
Load a cobra model stored as a .mat file
Parameters

e infile_ path (str)— path to the file to to read

176 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/json.html#json.dump
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/json.html#json.dumps
https://docs.python.org/3/library/stdtypes.html#str

cobra Documentation, Release 0.18.1

e variable_name (str, optional) — The variable name of the model in the
.mat file. If this is not specified, then the first MATLAB variable which looks like a
COBRA model will be used

e inf (value) — The value to use for infinite bounds. Some solvers do not handle
infinite values so for using those, set this to a high numeric value.

Returns The resulting cobra model

Return type cobra.core.Model.Model

cobra.io.save_matlab_model (model, file_name, varname=None)

Save the cobra model as a .mat file.
This .mat file can be used directly in the MATLAB version of COBRA.
Parameters
* model (cobra.core.Model.Model object)— The model to save
e file_name (str or file-like object)— The file to save to

* varname (string)— The name of the variable within the workspace

cobra.io.read_sbml_model (filename, number=float, f_replace=F_REPLACE, **kwargs)

Reads SBML model from given filename.

3]

If the given filename ends with the suffix “’.gz” (for example, “’myfile.xml.gz’), the file is assumed to
be compressed in gzip format and will be automatically decompressed upon reading. Similarly, if the
given filename ends with “.zip” or ’.bz2’, the file is assumed to be compressed in zip or bzip2 format
(respectively). Files whose names lack these suffixes will be read uncompressed. Note that if the file is in
zip format but the archive contains more than one file, only the first file in the archive will be read and the
rest ignored.

To read a gzip/zip file, libSBML needs to be configured and linked with the zlib library at compile time. It
also needs to be linked with the bzip2 library to read files in bzip2 format. (Both of these are the default
configurations for libSBML.)

This function supports SBML with FBC-v1 and FBC-v2. FBC-v1 models are converted to FBC-v2 models
before reading.

The parser tries to fall back to information in notes dictionaries if information is not available in the FBC
packages, e.g., CHARGE, FORMULA on species, or GENE_ASSOCIATION, SUBSYSTEM on reactions.

Parameters

e filename (path to SBML file, or SBML string, or SBML file
handle) - SBML which is read into cobra model

* number (data type of stoichiometry: {float, int}) — In which
data type should the stoichiometry be parsed.

* £ replace (dict of replacement functions for id
replacement) — Dictionary of replacement functions for gene, specie, and
reaction. By default the following id changes are performed on import: clip G_ from
genes, clip M_ from species, clip R_ from reactions If no replacements should be
performed, set f_replace={}, None

Returns

Return type cobra.core.Model

17.1. cobra 177

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

cobra Documentation, Release 0.18.1

Notes

Provided file handles cannot be opened in binary mode, i.e., use

with open(path, “r”’ as f): read_sbml_model(f)

File handles to compressed files are not supported yet.

cobra.io.write_sbml_model (cobra_model, filename, f_replace=F_REPLACE, **kwargs)

Writes cobra model to filename.
The created model is SBML level 3 version 1 (L1V3) with fbc package v2 (fbc-v2).

If the given filename ends with the suffix “.gz” (for example, “myfile.xml.gz”), libSBML assumes the caller
wants the file to be written compressed in gzip format. Similarly, if the given filename ends with “.zip”
or “.bz2”, libSBML assumes the caller wants the file to be compressed in zip or bzip2 format (respec-
tively). Files whose names lack these suffixes will be written uncompressed. Special considerations for
the zip format: If the given filename ends with “.zip”, the file placed in the zip archive will have the suffix
“xml” or “.sbml”. For example, the file in the zip archive will be named “test.xml” if the given filename is
“test.xml.zip” or “test.zip”. Similarly, the filename in the archive will be “test.sbml” if the given filename is

“test.sbml.zip”.
Parameters

¢ cobra_model (cobra.core.Model) — Model instance which is written to
SBML

* filename (string)— path to which the model is written

* £ replace (dict of replacement functions for id

replacement) —
cobra.io.validate_sbml_model (filename, check_model=True, inter-
nal_consistency=True, check_units_consistency=False,

check_modeling_practice=False, **kwargs)
Validate SBML model and returns the model along with a list of errors.

Parameters

* filename (str)— The filename (or SBML string) of the SBML model to be vali-
dated.

e internal_consistency (boolean {True, False}) — Check internal
consistency.

* check_units_consistency(boolean {True, False})—Check consis-
tency of units.

* check_modeling practice (boolean {True, False}) - Check mod-
eling practise.

¢ check_model (boolean {True, False})— Whether to also check some ba-
sic model properties such as reaction boundaries and compartment formulas.

Returns
¢ (model, errors)

* model (Model object) — The cobra model if the file could be read successfully or
None otherwise.

* errors (dict) — Warnings and errors grouped by their respective types.

Raises CobraSBMLError —

cobra.io.from_yaml (document)

Load a cobra model from a YAML document.

Parameters document (st r) - The YAML document representation of a cobra model.

178

Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

cobra Documentation, Release 0.18.1

Returns The cobra model as represented in the YAML document.
Return type cobra.Model

See also:
load yaml_model () Load directly from a file.
cobra.io.load_yaml_model (filename)

Load a cobra model from a file in YAML format.

Parameters filename (str or file-1ike)— File path or descriptor that contains the
YAML document describing the cobra model.

Returns The cobra model as represented in the YAML document.
Return type cobra.Model
See also:
from_yaml () Load from a string.
cobra.io.save_yaml_model (model, filename, sort=False, **kwargs)
Write the cobra model to a file in YAML format.
kwargs are passed on to yaml . dump.
Parameters
* model (cobra.Model) — The cobra model to represent.

e filename (str or file-1ike)— File path or descriptor that the YAML rep-
resentation should be written to.

* sort (bool, optional)— Whether to sort the metabolites, reactions, and genes
or maintain the order defined in the model.

See also:

to_yaml () Return a string representation.
ruamel.yaml.dump () Base function.
cobra.io.to_yaml (model, sort=False, **kwargs)
Return the model as a YAML document.
kwargs are passed on to yaml . dump.
Parameters
* model (cobra.Model)— The cobra model to represent.

* sort (bool, optional)— Whether to sort the metabolites, reactions, and genes
or maintain the order defined in the model.

Returns String representation of the cobra model as a YAML document.
Return type str

See also:

save_yaml _model () Write directly to a file.

ruamel.yaml.dump () Base function.

17.1. cobra 179

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

cobra Documentation, Release 0.18.1

cobra.manipulation

Submodules

cobra.manipulation.annotate

Module Contents

Functions

add_SBO(model)

adds SBO terms for demands and exchanges

cobra.manipulation.annotate.add_SBO (model)

adds SBO terms for demands and exchanges

This works for models which follow the standard convention for constructing and naming these reactions.

The reaction should only contain the single metabolite being exchanged, and the id should be EX_metid or

DM_metid

cobra.manipulation.delete

Module Contents

Classes
__GeneRemover A NodeVisitor subclass that walks the abstract
syntax tree and
Functions

prune_unused_metabolites(cobra_model)

Remove metabolites that are not involved in any reac-
tions and

prune_unused_react ions(cobra_model)

Remove reactions with no assigned metabolites, re-
turns pruned model

undelete_model_genes(cobra_model)

Undoes the effects of a call to delete_model_genes in
place.

get_compiled _gene_ reaction_rules(cobra_nhsetedyates a dict of compiled gene_reaction_rules

find_gene_knockout_reactions(cobra_model,identify reactions which will be disabled when the

gene_list, compiled_gene_reaction_rules=None)

genes are knocked out

delete_model_genes(cobra_model, gene_list,
cumulative_deletions=True, disable_orphans=False)

delete_model_genes will set the upper and lower
bounds for reactions

remove_genes(cobra_model, gene_list, re-
move_reactions=True)

remove genes entirely from the model

cobra.manipulation.delete.prune_unused_metabolites (cobra_model)
Remove metabolites that are not involved in any reactions and returns pruned model

Parameters cobra_model (class:~cobra.core.Model Model object) — the model to remove

unused metabolites from

Returns

180

Chapter 17. API Reference

cobra Documentation, Release 0.18.1

* output_model (class:~cobra.core.Model.Model object) — input model with unused
metabolites removed

« inactive_metabolites (list of class:~cobra.core.reaction.Reaction) — list of metabo-
lites that were removed

cobra.manipulation.delete.prune_unused_reactions (cobra_model)
Remove reactions with no assigned metabolites, returns pruned model

Parameters cobra_model (class:~cobra.core.Model Model object) — the model to remove
unused reactions from

Returns

* output_model (class:~cobra.core.Model.Model object) — input model with unused
reactions removed

* reactions_to_prune (list of class:~cobra.core.reaction.Reaction) — list of reactions
that were removed

cobra.manipulation.delete.undelete_model_genes (cobra_model)
Undoes the effects of a call to delete_model_genes in place.

cobra_model: A cobra.Model which will be modified in place

cobra.manipulation.delete.get_compiled _gene_reaction_rules (cobra_model)
Generates a dict of compiled gene_reaction_rules

Any gene_reaction_rule expressions which cannot be compiled or do not evaluate after compiling will be
excluded. The result can be used in the find_gene_knockout_reactions function to speed up evaluation of
these rules.

cobra.manipulation.delete.find_gene_knockout_reactions (cobra_model,
gene_list, com-
piled_gene_reaction_rules=None)
identify reactions which will be disabled when the genes are knocked out

cobra_model: Model
gene_list: iterable of Gene

compiled_gene_reaction_rules: dict of {reaction_id: compiled_string} If provided, this gives pre-
compiled gene_reaction_rule strings. The compiled rule strings can be evaluated much faster. If a rule
is not provided, the regular expression evaluation will be used. Because not all gene_reaction_rule
strings can be evaluated, this dict must exclude any rules which can not be used with eval.

cobra.manipulation.delete.delete_model_genes (cobra_model, gene_list, cu-
mulative_deletions=True, dis-

able_orphans=False)
delete_model_genes will set the upper and lower bounds for reactions catalysed by the genes

in gene_list if deleting the genes means that the reaction cannot proceed according to co-
bra_model.reactions|:].gene_reaction_rule

cumulative_deletions: False or True. If True then any previous deletions will be maintained in the model.

class cobra.manipulation.delete._GeneRemover (farget_genes)
Bases: ast .NodeTransformer

A NodeVisitor subclass that walks the abstract syntax tree and allows modification of nodes.

The NodeTransformer will walk the AST and use the return value of the visitor methods to replace or
remove the old node. If the return value of the visitor method is None, the node will be removed from its
location, otherwise it is replaced with the return value. The return value may be the original node in which
case no replacement takes place.

Here is an example transformer that rewrites all occurrences of name lookups (foo) to data['foo']:

17.1. cobra 181

https://docs.python.org/3/library/ast.html#ast.NodeTransformer

cobra Documentation, Release 0.18.1

class RewriteName (NodeTransformer) :

def visit_Name (self, node):
return Subscript (
value=Name (id='data', ctx=Load()),
slice=Index (value=Str (s=node.id)),
ctx=node.ctx

Keep in mind that if the node you’re operating on has child nodes you must either transform the child nodes
yourself or call the generic_visit () method for the node first.

For nodes that were part of a collection of statements (that applies to all statement nodes), the visitor may
also return a list of nodes rather than just a single node.

Usually you use the transformer like this:

node = YourTransformer () .visit (node)

visit_Name (self, node)
visit_BoolOp (self, node)

cobra.manipulation.delete.remove_genes (cobra_model, gene_list, re-

move_reactions=True)
remove genes entirely from the model

This will also simplify all gene_reaction_rules with this gene inactivated.

cobra.manipulation.modify

Module Contents

Classes
_GeneEscaper A NodeVisitor subclass that walks the abstract
syntax tree and
Functions
_escape_str_id(id_str) make a single string id SBML compliant
escape_ ID(cobra_model) makes all ids SBML compliant
rename_genes(cobra_model, rename_dict) renames genes in a model from the rename_dict

cobra.manipulation.modify._renames = [['.', '_DOT_'], ['(', '_LPAREN_'], [')', '_RPAREN_

cobra.manipulation.modify._escape_str_id (id_str)
make a single string id SBML compliant

class cobra.manipulation.modify._GeneEscaper
Bases: ast .NodeTransformer

A NodeVisitor subclass that walks the abstract syntax tree and allows modification of nodes.

The NodeTransformer will walk the AST and use the return value of the visitor methods to replace or
remove the old node. If the return value of the visitor method is None, the node will be removed from its
location, otherwise it is replaced with the return value. The return value may be the original node in which
case no replacement takes place.

182 Chapter 17. API Reference

https://docs.python.org/3/library/ast.html#ast.NodeTransformer

cobra Documentation, Release 0.18.1

Here is an example transformer that rewrites all occurrences of name lookups (foo) to data['foo']:

class RewriteName (NodeTransformer) :

def visit_Name (self, node):
return Subscript (
value=Name (id='data', ctx=Load()),
slice=Index (value=Str (s=node.id)),
ctx=node.ctx

Keep in mind that if the node you’re operating on has child nodes you must either transform the child nodes
yourself or call the generic_visit () method for the node first.

For nodes that were part of a collection of statements (that applies to all statement nodes), the visitor may
also return a list of nodes rather than just a single node.

Usually you use the transformer like this:

node = YourTransformer () .visit (node)

visit_Name (self, node)

cobra.manipulation.modify.escape_1ID (cobra_model)
makes all ids SBML compliant

cobra.manipulation.modify.rename_genes (cobra_model, rename_dict)
renames genes in a model from the rename_dict

cobra.manipulation.validate
Module Contents

Functions

check_mass_balance(model)
check_metabolite_compartment_ formula(model)

cobra.manipulation.validate.NOT_MASS_BALANCED_TERMS
cobra.manipulation.validate.check_mass_balance (model)

cobra.manipulation.validate.check_metabolite_compartment_formula (model)

Package Contents

Functions

add_SBO(model) adds SBO terms for demands and exchanges
delete_model_genes(cobra_model, gene_list, delete_model_genes will set the upper and lower
cumulative_deletions=True, disable_orphans=False) bounds for reactions
find_gene_knockout_reactions(cobra_model,identify reactions which will be disabled when the
gene_list, compiled_gene_reaction_rules=None) genes are knocked out
remove_genes(cobra_model, gene_list, re- remove genes entirely from the model
move_reactions=True)

Continued on next page

17.1. cobra 183

cobra Documentation, Release 0.18.1

Table 48 — continued from previous page

undelete model_genes(cobra_model) Undoes the effects of a call to delete_model_genes in
place.
escape_ ID(cobra_model) makes all ids SBML compliant

get_compiled _gene_reaction_rules(cobra_rhmialates a dict of compiled gene_reaction_rules
check_mass_balance(model)
check_metabolite compartment_ formula(model)

cobra.manipulation.add_SBO (model)
adds SBO terms for demands and exchanges

This works for models which follow the standard convention for constructing and naming these reactions.

The reaction should only contain the single metabolite being exchanged, and the id should be EX_metid or
DM_metid

cobra.manipulation.delete_model_genes (cobra_model, gene_list, cumula-

tive_deletions=True, disable_orphans=False)
delete_model_genes will set the upper and lower bounds for reactions catalysed by the genes

in gene_list if deleting the genes means that the reaction cannot proceed according to co-
bra_model.reactions[:].gene_reaction_rule

cumulative_deletions: False or True. If True then any previous deletions will be maintained in the model.

cobra.manipulation. find_gene_knockout_reactions (cobra_model, gene_list, com-

piled_gene_reaction_rules=None)
identify reactions which will be disabled when the genes are knocked out

cobra_model: Model
gene_list: iterable of Gene

compiled_gene_reaction_rules: dict of {reaction_id: compiled_string} If provided, this gives pre-
compiled gene_reaction_rule strings. The compiled rule strings can be evaluated much faster. If a rule
is not provided, the regular expression evaluation will be used. Because not all gene_reaction_rule
strings can be evaluated, this dict must exclude any rules which can not be used with eval.

cobra.manipulation.remove_genes (cobra_model, gene_list, remove_reactions=True)
remove genes entirely from the model

This will also simplify all gene_reaction_rules with this gene inactivated.

cobra.manipulation.undelete_model_genes (cobra_model)
Undoes the effects of a call to delete_model_genes in place.

cobra_model: A cobra.Model which will be modified in place

cobra.manipulation.escape_ID (cobra_model)
makes all ids SBML compliant

cobra.manipulation.get_compiled_gene_reaction_rules (cobra_model)
Generates a dict of compiled gene_reaction_rules

Any gene_reaction_rule expressions which cannot be compiled or do not evaluate after compiling will be
excluded. The result can be used in the find_gene_knockout_reactions function to speed up evaluation of
these rules.

cobra.manipulation.check_mass_balance (model)

cobra.manipulation.check_metabolite_compartment_formula (model)

184 Chapter 17. API Reference

cobra Documentation, Release 0.18.1

cobra.medium

Imports for the media module.

Submodules
cobra.medium.annotations

Lists and annotations for compartment names and reactions.

Please send a PR if you want to add something here :)

Module Contents

cobra.medium.annotations.excludes
A list of sub-strings in reaction IDs that usually indicate that the reaction is not a reaction of the specified

type.

cobra.medium.annotations.sbo_terms
SBO term identifiers for various boundary types.

cobra.medium.annotations.compartment_shortlist
A list of common compartment abbreviations and alternative names.

cobra.medium.boundary_types

Contains function to identify the type of boundary reactions.

This module uses various heuristics to decide whether a boundary reaction is an exchange, demand or sink reac-
tion. It mostly orientates on the following paper:

Thiele, 1., & Palsson, B. @. (2010, January). A protocol for generating a high-quality genome-scale metabolic
reconstruction. Nature protocols. Nature Publishing Group. http://doi.org/10.1038/nprot.2009.203

Module Contents

Functions

find external_compartment(model) Find the external compartment in the model.
is_boundary_type(reaction, boundary_type, ex- Check whether a reaction is an exchange reaction.
ternal_compartment)

find_boundary_types(model, boundary_type, Find specific boundary reactions.
external_compartment=None)

cobra.medium.boundary_types.LOGGER

cobra.medium.boundary_types.find_external_compartment (model)
Find the external compartment in the model.

Uses a simple heuristic where the external compartment should be the one with the most exchange reactions.
Parameters model (cobra.Model)— A cobra model.
Returns The putative external compartment.

Return type str

17.1. cobra 185

http://doi.org/10.1038/nprot.2009.203
https://docs.python.org/3/library/stdtypes.html#str

cobra Documentation, Release 0.18.1

cobra.medium.boundary_types.is_boundary_type (reaction, boundary_type, exter-

nal_compartment)
Check whether a reaction is an exchange reaction.

Parameters
e reaction (cobra.Reaction) - The reaction to check.

* boundary_type (str) - What boundary type to check for. Must be one of “ex-
change”, “demand”, or “sink”.

* external_compartment (str)— The id for the external compartment.
Returns Whether the reaction looks like the requested type. Might be based on a heuristic.
Return type boolean

cobra.medium.boundary_types.find_boundary_types (model, boundary_type, exter-

nal_compartment=None)
Find specific boundary reactions.

Parameters
* model (cobra.Model) — A cobra model.

* boundary_type (st r)— What boundary type to check for. Must be one of “ex-
change”, “demand”, or “sink”.

* external_compartment (str or None)— The id for the external compart-
ment. If None it will be detected automatically.

Returns A list of likely boundary reactions of a user defined type.

Return type list of cobra.reaction

cobra.medium.minimal medium

Contains functions and helpers to obtain minimal growth media.

Module Contents

Functions
add_linear_ob j(model) Add a linear version of a minimal medium to the
model solver.
add_mip_ob j(model) Add a mixed-integer version of a minimal medium to
the model.

_as_medium(exchanges, tolerance=1e-06, ex- Convert a solution to medium.

ports=False)

minimal_medium(model, Find the minimal growth medium for the model.
min_objective_value=0.1, exports=False, = mini-

mize_components=False, open_exchanges=False)

cobra.medium.minimal_medium.LOGGER

cobra.medium.minimal_medium.add_linear obj (model)
Add a linear version of a minimal medium to the model solver.

Changes the optimization objective to finding the growth medium requiring the smallest total import flux:

minimize sum |r_i| for r_i in import_reactions

186 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

cobra Documentation, Release 0.18.1

Parameters model (cobra.Model)— The model to modify.

cobra.medium.minimal_medium.add_mip_ob3j (model)
Add a mixed-integer version of a minimal medium to the model.

Changes the optimization objective to finding the medium with the least components:

minimize size(R) where R part of import_reactions

Parameters model (cobra.model)— The model to modify.

cobra.medium.minimal_medium._as_medium (exchanges, tolerance=1e-06, exports=False)
Convert a solution to medium.

Parameters

* exchanges (list of cobra.reaction) — The exchange reactions to con-
sider.

* tolerance (positive double) — The absolute tolerance for fluxes. Fluxes
with an absolute value smaller than this number will be ignored.

* exports (bool)— Whether to return export fluxes as well.
Returns The “medium”, meaning all active import fluxes in the solution.
Return type pandas.Series

cobra.medium.minimal medium.minimal medium (model, min_objective_value=0.1,
exports=False, mini-
mize_components=~False,

open_exchanges=False)
Find the minimal growth medium for the model.

Finds the minimal growth medium for the model which allows for model as well as individual growth.
Here, a minimal medium can either be the medium requiring the smallest total import flux or the medium

requiring the least components (ergo ingredients), which will be much slower due to being a mixed integer
problem (MIP).

Parameters
* model (cobra.model)— The model to modify.

* min_objective_value (positive float or array-like object)
— The minimum growth rate (objective) that has to be achieved.

* exports (boolean) — Whether to include export fluxes in the returned medium.
Defaults to False which will only return import fluxes.

* minimize_ components (boolean or positive int)-— Whether to min-
imize the number of components instead of the total import flux. Might be more
intuitive if set to True but may also be slow to calculate for large communities. If set
to a number n will return up to »n alternative solutions all with the same number of
components.

* open_exchanges (boolean or number)— Whether to ignore currently set
bounds and make all exchange reactions in the model possible. If set to a number all
exchange reactions will be opened with (-number, number) as bounds.

Returns A series giving the import flux for each required import reaction and (optionally) the
associated export fluxes. All exchange fluxes are oriented into the import reaction e.g.
positive fluxes denote imports and negative fluxes exports. If minimize_components is
a number larger 1 may return a DataFrame where each column is a minimal medium.
Returns None if the minimization is infeasible (for instance if min_growth > maximum
growth rate).

Return type pandas.Series, pandas.DataFrame or None

17.1. cobra 187

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

cobra Documentation, Release 0.18.1

Notes

Due to numerical issues the minimize_components option will usually only minimize the number of “large”
import fluxes. Specifically, the detection limit is given by integrality_tolerance * max_bound
where max_bound is the largest bound on an import reaction. Thus, if you are interested in small import
fluxes as well you may have to adjust the solver tolerance at first with model.tolerance = 1e-7 for instance.
However, this will be very slow for large models especially with GLPK.

Package Contents

Functions

find_boundary_types(model, boundary_type, Find specific boundary reactions.
external_compartment=None)

find_external_compartment(model) Find the external compartment in the model.
1s_boundary_type(reaction, boundary_type, ex- Check whether a reaction is an exchange reaction.
ternal_compartment)

minimal_medium(model, Find the minimal growth medium for the model.
min_objective_value=0.1, exports=False, = mini-

mize_components=False, open_exchanges=False)

cobra.medium. find boundary_types (model, boundary_type, external_compartment=None)
Find specific boundary reactions.

Parameters
* model (cobra.Model)— A cobra model.

* boundary_ type (str)— What boundary type to check for. Must be one of “ex-
change”, “demand”, or “sink”.

* external_compartment (str or None)— The id for the external compart-
ment. If None it will be detected automatically.

Returns A list of likely boundary reactions of a user defined type.
Return type list of cobra.reaction

cobra.medium. find_external_compartment (model)
Find the external compartment in the model.

Uses a simple heuristic where the external compartment should be the one with the most exchange reactions.
Parameters model (cobra.Model)— A cobra model.
Returns The putative external compartment.
Return type str

cobra.medium.is_boundary_type (reaction, boundary_type, external_compartment)
Check whether a reaction is an exchange reaction.

Parameters
e reaction (cobra.Reaction) - The reaction to check.

* boundary_type (str)— What boundary type to check for. Must be one of “ex-
change”, “demand”, or “sink”.

* external_compartment (str)— The id for the external compartment.
Returns Whether the reaction looks like the requested type. Might be based on a heuristic.

Return type boolean

188 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

cobra Documentation, Release 0.18.1

cobra.medium.sbo_terms
SBO term identifiers for various boundary types.

cobra.medium.minimal_medium (model, min_objective_value=0.1, exports=False, mini-

mize_components=False, open_exchanges=False)
Find the minimal growth medium for the model.

Finds the minimal growth medium for the model which allows for model as well as individual growth.
Here, a minimal medium can either be the medium requiring the smallest total import flux or the medium
requiring the least components (ergo ingredients), which will be much slower due to being a mixed integer
problem (MIP).

Parameters
* model (cobra.model)— The model to modify.

* min_objective_value (positive float or array-like object)
— The minimum growth rate (objective) that has to be achieved.

* exports (boolean)— Whether to include export fluxes in the returned medium.
Defaults to False which will only return import fluxes.

* minimize_components (boolean or positive int)-— Whether to min-
imize the number of components instead of the total import flux. Might be more
intuitive if set to True but may also be slow to calculate for large communities. If set
to a number n will return up to n alternative solutions all with the same number of
components.

* open_exchanges (boolean or number)— Whether to ignore currently set
bounds and make all exchange reactions in the model possible. If set to a number all
exchange reactions will be opened with (-number, number) as bounds.

Returns A series giving the import flux for each required import reaction and (optionally) the
associated export fluxes. All exchange fluxes are oriented into the import reaction e.g.
positive fluxes denote imports and negative fluxes exports. If minimize_components is
a number larger 1 may return a DataFrame where each column is a minimal medium.
Returns None if the minimization is infeasible (for instance if min_growth > maximum
growth rate).

Return type pandas.Series, pandas.DataFrame or None
Notes
Due to numerical issues the minimize_components option will usually only minimize the number of “large”
import fluxes. Specifically, the detection limit is given by integrality_tolerance * max_bound
where max_bound is the largest bound on an import reaction. Thus, if you are interested in small import

fluxes as well you may have to adjust the solver tolerance at first with model.tolerance = Ie-7 for instance.
However, this will be very slow for large models especially with GLPK.

cobra.sampling
Submodules
cobra.sampling.achr

Provide ACHR sampler.

17.1. cobra 189

https://docs.python.org/3/library/constants.html#None

cobra Documentation, Release 0.18.1

Module Contents

Classes

ACHRSampler Artificial Centering Hit-and-Run sampler.

class cobra.sampling.achr.ACHRSampler (model, thinning=100, nproj=None, seed=None)
Bases: cobra.sampling.hr_sampler.HRSampler

Artificial Centering Hit-and-Run sampler.
A sampler with low memory footprint and good convergence.
Parameters
* model (cobra.Model) — The cobra model from which to generate samples.

* thinning (int, optional) — The thinning factor of the generated sampling
chain. A thinning of 10 means samples are returned every 10 steps.

* nproj (int > 0, optional)- How often to reproject the sampling point into
the feasibility space. Avoids numerical issues at the cost of lower sampling. If you
observe many equality constraint violations with sampler.validate you should lower
this number.

e seed (int > 0, optional) - Sets the random number seed. Initialized to the
current time stamp if None.

model
The cobra model from which the samples get generated.

Type cobra.Model
thinning
The currently used thinning factor.
Type int

n_samples
The total number of samples that have been generated by this sampler instance.

Type int

problem
A python object whose attributes define the entire sampling problem in matrix form. See docstring of
Problem.

Type collections.namedtuple

warmup
A matrix of with as many columns as reactions in the model and more than 3 rows containing a
warmup sample in each row. None if no warmup points have been generated yet.
Type numpy.matrix

retries
The overall of sampling retries the sampler has observed. Larger values indicate numerical instabili-
ties.

Type int

seed
Sets the random number seed. Initialized to the current time stamp if None.

Type int > 0, optional

190 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://docs.python.org/3/library/functions.html#int

cobra Documentation, Release 0.18.1

nproj
How often to reproject the sampling point into the feasibility space.

Type int

fwd_idx
Has one entry for each reaction in the model containing the index of the respective forward variable.

Type numpy.array

rev_idx
Has one entry for each reaction in the model containing the index of the respective reverse variable.

Type numpy.array

prev
The current/last flux sample generated.

Type numpy.array

center
The center of the sampling space as estimated by the mean of all previously generated samples.

Type numpy.array

Notes

ACHR generates samples by choosing new directions from the sampling space’s center and the warmup
points. The implementation used here is the same as in the Matlab Cobra Toolbox” and uses only the
initial warmup points to generate new directions and not any other previous iterates. This usually gives
better mixing since the startup points are chosen to span the space in a wide manner. This also makes the
generated sampling chain quasi-markovian since the center converges rapidly.

Memory usage is roughly in the order of (2 * number reactions)”*2 due to the required nullspace matrices
and warmup points. So large models easily take up a few GB of RAM.

References

__single_iteration (self)

sample (self, n, fluxes=True)
Generate a set of samples.

This is the basic sampling function for all hit-and-run samplers.
Parameters
* n (int)— The number of samples that are generated at once.

e fluxes (boolean)— Whether to return fluxes or the internal solver variables.
If set to False will return a variable for each forward and backward flux as well as
all additional variables you might have defined in the model.

Returns Returns a matrix with n rows, each containing a flux sample.

Return type numpy.matrix

2 https://github.com/opencobra/cobratoolbox

17.1. cobra 191

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://github.com/opencobra/cobratoolbox

cobra Documentation, Release 0.18.1

Notes

Performance of this function linearly depends on the number of reactions in your model and the
thinning factor.

cobra.sampling.hr_ sampler

Provide base class for Hit-and-Run samplers.

New samplers should derive from the abstract HRSampler class where possible to provide a uniform interface.

Module Contents

Classes

HRSampler The abstract base class for hit-and-run samplers.

Functions

shared np_array(shape, data=None, inte- Create a new numpy array that resides in shared mem-

ger=False) ory.
step(sampler, x, delta, fraction=None, tries=0) Sample a new feasible point from the point x in direc-
tion delta.

cobra.sampling.hr_sampler.LOGGER
cobra.sampling.hr_sampler.MAX TRIES = 100

cobra.sampling.hr_sampler.Problem
Defines the matrix representation of a sampling problem.

cobra.sampling.hr_sampler.equalities
All equality constraints in the model.

Type numpy.array

cobra.sampling.hr_sampler.b
The right side of the equality constraints.

Type numpy.array

cobra.sampling.hr_sampler.inequalities
All inequality constraints in the model.

Type numpy.array

cobra.sampling.hr_sampler.bounds
The lower and upper bounds for the inequality constraints.

Type numpy.array

cobra.sampling.hr_sampler.variable_bounds
The lower and upper bounds for the variables.

Type numpy.array

cobra.sampling.hr_sampler.homogeneous
Indicates whether the sampling problem is homogenous, e.g. whether there exist no non-zero fixed
variables or constraints.

192 Chapter 17. API Reference

cobra Documentation, Release 0.18.1

Type boolean

cobra.sampling.hr_sampler.nullspace
A matrix containing the nullspace of the equality constraints. Each column is one basis vector.

Type numpy.matrix

cobra.sampling.hr_sampler.shared_np_array (shape, data=None, integer="False)
Create a new numpy array that resides in shared memory.

Parameters
* shape (tuple of ints) - The shape of the new array.

* data (numpy.array) — Data to copy to the new array. Has to have the same
shape.

* integer (boolean) — Whether to use an integer array. Defaults to False which
means float array.

class cobra.sampling.hr_sampler.HRSampler (model, thinning, nproj=None, seed=None)
Bases: object

The abstract base class for hit-and-run samplers.
Parameters
* model (cobra.Model) — The cobra model from which to generate samples.

* thinning (int)- The thinning factor of the generated sampling chain. A thinning
of 10 means samples are returned every 10 steps.

* nproj (int > 0, optional)- How often to reproject the sampling point into
the feasibility space. Avoids numerical issues at the cost of lower sampling. If you
observe many equality constraint violations with sampler.validate you should lower
this number.

* seed (int > 0, optional)- The random number seed that should be used.

model
The cobra model from which the sampes get generated.

Type cobra.Model

feasibility tol
The tolerance used for checking equalities feasibility.

Type float

bounds_tol
The tolerance used for checking bounds feasibility.

Type float
thinning
The currently used thinning factor.
Type int

n_samples
The total number of samples that have been generated by this sampler instance.

Type int

retries

The overall of sampling retries the sampler has observed. Larger values indicate numerical instabili-
ties.

Type int

17.1. cobra 193

https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

cobra Documentation, Release 0.18.1

problem
A python object whose attributes define the entire sampling problem in matrix form. See docstring of
Problem.

Type collections.namedtuple

warmup
A matrix of with as many columns as reactions in the model and more than 3 rows containing a
warmup sample in each row. None if no warmup points have been generated yet.

Type numpy.matrix

nproj
How often to reproject the sampling point into the feasibility space.

Type int

seed
Sets the random number seed. Initialized to the current time stamp if None.

Type int > 0, optional

fwd_idx
Has one entry for each reaction in the model containing the index of the respective forward variable.

Type numpy.array

rev_idx
Has one entry for each reaction in the model containing the index of the respective reverse variable.

Type numpy.array

_ _build problem (self)
Build the matrix representation of the sampling problem.

generate_fva_warmup (self)
Generate the warmup points for the sampler.

Generates warmup points by setting each flux as the sole objective and minimizing/maximizing it.
Also caches the projection of the warmup points into the nullspace for non-homogeneous problems
(only if necessary).

_reproject (self, p)
Reproject a point into the feasibility region.

This function is guaranteed to return a new feasible point. However, no guarantees in terms of prox-
imity to the original point can be made.

Parameters p (numpy.array) — The current sample point.
Returns A new feasible point. If p was feasible it wil return p.
Return type numpy.array

_random_point (self)
Find an approximately random point in the flux cone.

_is_redundant (self, matrix, cutoff=None)
Identify rdeundant rows in a matrix that can be removed.

_bounds_dist (self, p)
Get the lower and upper bound distances. Negative is bad.

sample (self, n, fluxes=True)
Abstract sampling function.

Should be overwritten by child classes.

batch (self, batch_size, batch_num, fluxes=True)
Create a batch generator.

194 Chapter 17. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://docs.python.org/3/library/functions.html#int

cobra Documentation, Release 0.18.1

This is useful to generate n batches of m samples each.
Parameters
* batch_size (int) - The number of samples contained in each batch (m).
* batch_num (int)— The number of batches in the generator (n).

e fluxes (boolean)— Whether to return fluxes or the internal solver variables.
If set to False will return a variable for each forward and backward flux as well as
all additional variables you might have defined in the model.

Yields pandas.DataFrame — A DataFrame with dimensions (batch_size X n_r) containing
a valid flux sample for a total of n_r reactions (or variables if fluxes=False) in each
row.

validate (self, samples)
Validate a set of samples for equality and inequality feasibility.

Can be used to check whether the generated samples and warmup points are feasible.

Parameters samples (numpy.matrix) — Must be of dimension (n_samples x
n_reactions). Contains the samples to be validated. Samples must be from fluxes.

Returns

A one-dimensional numpy array of length containing a code of 1 to 3 letters denoting
the validation result:

* ’v’ means feasible in bounds and equality constraints
* ’I” means a lower bound violation
* ’u’ means a lower bound validation
e ’¢’ means and equality constraint violation
Return type numpy.array

cobra.sampling.hr_sampler.step (sampler, x, delta, fraction=None, tries=0)
Sample a new feasible point from the point x in direction delta.

cobra.sampling.optgp

Provide OptGP sampler.

Module Contents

Classes

OptGPSampler A parallel optimized sampler.

class cobra.sampling.optgp.OptGPSampler (model, processes=None, thinning=100,

nproj=None, seed=None)
Bases: cobra.sampling.hr _sampler.HRSampler

A parallel optimized sampler.
A parallel sampler with fast convergence and parallel execution. See' for details.
Parameters

* model (cobra.Model) — The cobra model from which to generate samples.

I Megchelenbrink W, Huynen M, Marchiori E (2014) optGpSampler: An Improved Tool for Uniformly Sampling the Solution-Space of
Genome-Scale Metabolic Networks. PLoS ONE 9(2): e86587. https://doi.org/10.1371/journal.pone.0086587

17.1. cobra 195

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://doi.org/10.1371/journal.pone.0086587

cobra Documentation, Release 0.18.1

* processes (int, optional (default Configuration.
processes))— The number of processes used during sampling.

* thinning (int, optional) — The thinning factor of the generated sampling
chain. A thinning of 10 means samples are returned every 10 steps.

* nproj (int > 0, optional)- How often to reproject the sampling point into
the feasibility space. Avoids numerical issues at the cost of lower sampling. If you
observe many equality constraint violations with sampler.validate you should lower
this number.

e seed (int > 0, optional) - Sets the random number seed. Initialized to the
current time stamp if None.

model
The cobra model from which the samples get generated.

Type cobra.Model
thinning
The currently used thinning factor.
Type int

n_samples
The total number of samples that have been generated by this sampler instance.

Type int

problem
A python object whose attributes define the entire sampling problem in matrix form. See docstring of
Problem.

Type collections.namedtuple

warmup
A matrix of with as many columns as reactions in the model and more than 3 rows containing a
warmup sample in each row. None if no warmup points have been generated yet.

Type numpy.matrix

retries
The overall of sampling retries the sampler has observed. Larger values indicate numerical instabili-
ties.

Type int

seed
Sets the random number seed. Initialized to the current time stamp if None.

Type int > 0, optional

nproj
How often to reproject the sampling point into the feasibility space.

Type int

fwd_idx
Has one entry for each reaction in the model containing the index of the respective forward variable.

Type numpy.array

rev_idx
Has one entry for each reaction in the model containing the index of the respective reverse variable.

Type numpy.array

prev
The current/last flux sample generated.

Type numpy.array

196

Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

cobra Documentation, Release 0.18.1

center
The center of the sampling space as estimated by the mean of all previously generated samples.

Type numpy.array

Notes

The sampler is very similar to artificial centering where each process samples its own chain. Initial points
are chosen randomly from the warmup points followed by a linear transformation that pulls the points a
little bit towards the center of the sampling space.

If the number of processes used is larger than the one requested, number of samples is adjusted to the
smallest multiple of the number of processes larger than the requested sample number. For instance, if you
have 3 processes and request 8 samples you will receive 9.

Memory usage is roughly in the order of (2 * number reactions)*2 due to the required nullspace matrices
and warmup points. So large models easily take up a few GB of RAM. However, most of the large matrices
are kept in shared memory. So the RAM usage is independent of the number of processes.

References
sample (self, n, fluxes=True)
Generate a set of samples.
This is the basic sampling function for all hit-and-run samplers.
Parameters

* n (int) — The minimum number of samples that are generated at once (see
Notes).

e fluxes (boolean)— Whether to return fluxes or the internal solver variables.
If set to False will return a variable for each forward and backward flux as well as
all additional variables you might have defined in the model.

Returns Returns a matrix with n rows, each containing a flux sample.

Return type numpy.matrix

Notes

Performance of this function linearly depends on the number of reactions in your model and the
thinning factor.

If the number of processes is larger than one, computation is split across as the CPUs of your ma-
chine. This may shorten computation time. However, there is also overhead in setting up parallel
computation so we recommend to calculate large numbers of samples at once (n > 1000).

__getstate__ (self)
Return the object for serialization.

17.1. cobra 197

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix

cobra Documentation, Release 0.18.1

cobra.sampling.sampling

Module implementing flux sampling for cobra models.

Module Contents

Functions

sample(model, n, method="optgp’, thinning=100, Sample valid flux distributions from a cobra model.
processes=1, seed=None)

cobra.sampling.sampling.sample (model, n, method='optgp', thinning=100, processes=1,

seed=None)
Sample valid flux distributions from a cobra model.

The function samples valid flux distributions from a cobra model. Currently we support two methods:

1. ‘optgp’ (default) which uses the OptGPSampler that supports parallel sampling'. Requires
large numbers of samples to be performant (n < 1000). For smaller samples ‘achr’ might be
better suited.

or
2. ‘achr’ which uses artificial centering hit-and-run. This is a single process method with good conver-
gence’.
Parameters
* model (cobra.Model) — The model from which to sample flux distributions.

* n (int) — The number of samples to obtain. When using ‘optgp’ this must be a
multiple of processes, otherwise a larger number of samples will be returned.

* method (str, optional)- The sampling algorithm to use.

* thinning (int, optional) — The thinning factor of the generated sampling
chain. A thinning of 10 means samples are returned every 10 steps. Defaults to 100
which in benchmarks gives approximately uncorrelated samples. If set to one will
return all iterates.

* processes (int, optional)— Only used for ‘optgp’. The number of pro-
cesses used to generate samples.

e seed (int > 0, optional)- The random number seed to be used. Initialized
to current time stamp if None.

Returns The generated flux samples. Each row corresponds to a sample of the fluxes and the
columns are the reactions.

Return type pandas.DataFrame

! Megchelenbrink W, Huynen M, Marchiori E (2014) optGpSampler: An Improved Tool for Uniformly Sampling the Solution-Space of
Genome-Scale Metabolic Networks. PLoS ONE 9(2): e86587.

2 Direction Choice for Accelerated Convergence in Hit-and-Run Sampling David E. Kaufman Robert L. Smith Operations Research
199846:1 , 84-95

198 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

cobra Documentation, Release 0.18.1

Notes

The samplers have a correction method to ensure equality feasibility for long-running chains, however this
will only work for homogeneous models, meaning models with no non-zero fixed variables or constraints (

right-hand side of the equalities are zero).

References

Package Contents

Classes
HRSampler The abstract base class for hit-and-run samplers.
ACHRSampler Artificial Centering Hit-and-Run sampler.
OptGPSampler A parallel optimized sampler.

Functions

shared _np_array(shape, data=None, inte-

ger=False)

Create a new numpy array that resides in shared mem-
ory.

step(sampler, X, delta, fraction=None, tries=0)

Sample a new feasible point from the point x in direc-
tion delta.

sample(model, n, method="optgp’, thinning=100,
processes=1, seed=None)

Sample valid flux distributions from a cobra model.

class cobra.sampling.HRSampler (model, thinning, nproj=None, seed=None)

Bases: object
The abstract base class for hit-and-run samplers.

Parameters

* model (cobra.Model) — The cobra model from which to generate samples.

* thinning (int) - The thinning factor of the generated sampling chain. A thinning
of 10 means samples are returned every 10 steps.

* nproj (int > 0,

optional)— How often to reproject the sampling point into

the feasibility space. Avoids numerical issues at the cost of lower sampling. If you
observe many equality constraint violations with sampler.validate you should lower

this number.
e seed(int > 0,

model

optional)— The random number seed that should be used.

The cobra model from which the sampes get generated.

Type cobra.Model
feasibility_ tol

The tolerance used for checking equalities feasibility.

Type float
bounds_tol

The tolerance used for checking bounds feasibility.

Type float

17.1. cobra

199

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

cobra Documentation, Release 0.18.1

thinning
The currently used thinning factor.

Type int

n_samples
The total number of samples that have been generated by this sampler instance.

Type int

retries
The overall of sampling retries the sampler has observed. Larger values indicate numerical instabili-
ties.

Type int

problem
A python object whose attributes define the entire sampling problem in matrix form. See docstring of
Problem.

Type collections.namedtuple

warmup
A matrix of with as many columns as reactions in the model and more than 3 rows containing a
warmup sample in each row. None if no warmup points have been generated yet.

Type numpy.matrix

nproj
How often to reproject the sampling point into the feasibility space.

Type int

seed
Sets the random number seed. Initialized to the current time stamp if None.

Type int > 0, optional

fwd_idx
Has one entry for each reaction in the model containing the index of the respective forward variable.

Type numpy.array

rev_idx
Has one entry for each reaction in the model containing the index of the respective reverse variable.

Type numpy.array

__build problem (self)
Build the matrix representation of the sampling problem.

generate_fva_warmup (self)
Generate the warmup points for the sampler.

Generates warmup points by setting each flux as the sole objective and minimizing/maximizing it.
Also caches the projection of the warmup points into the nullspace for non-homogeneous problems
(only if necessary).

_reproject (self, p)
Reproject a point into the feasibility region.

This function is guaranteed to return a new feasible point. However, no guarantees in terms of prox-
imity to the original point can be made.

Parameters p (numpy.array) - The current sample point.
Returns A new feasible point. If p was feasible it wil return p.

Return type numpy.array

200 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://docs.python.org/3/library/functions.html#int

cobra Documentation, Release 0.18.1

_random_point (self)
Find an approximately random point in the flux cone.

_is_redundant (self, matrix, cutoff=None)
Identify rdeundant rows in a matrix that can be removed.

_bounds_dist (self, p)
Get the lower and upper bound distances. Negative is bad.

sample (self, n, fluxes=True)
Abstract sampling function.

Should be overwritten by child classes.

batch (self, batch_size, batch_num, fluxes=True)
Create a batch generator.

This is useful to generate n batches of m samples each.
Parameters
* batch_size (int) - The number of samples contained in each batch (m).
* batch_num (int)— The number of batches in the generator (n).

e fluxes (boolean)— Whether to return fluxes or the internal solver variables.
If set to False will return a variable for each forward and backward flux as well as
all additional variables you might have defined in the model.

Yields pandas.DataFrame — A DataFrame with dimensions (batch_size x n_r) containing
a valid flux sample for a total of n_r reactions (or variables if fluxes=False) in each
row.

validate (self, samples)
Validate a set of samples for equality and inequality feasibility.

Can be used to check whether the generated samples and warmup points are feasible.

Parameters samples (numpy.matrix) — Must be of dimension (n_samples x
n_reactions). Contains the samples to be validated. Samples must be from fluxes.

Returns

A one-dimensional numpy array of length containing a code of 1 to 3 letters denoting
the validation result:

* ’v’ means feasible in bounds and equality constraints
* ’]’ means a lower bound violation
* ’u’ means a lower bound validation
* ’¢’ means and equality constraint violation
Return type numpy.array

cobra.sampling.shared_np_array (shape, data=None, integer="False)
Create a new numpy array that resides in shared memory.

Parameters
* shape (tuple of ints)- The shape of the new array.

* data (numpy.array) — Data to copy to the new array. Has to have the same
shape.

* integer (boolean) — Whether to use an integer array. Defaults to False which
means float array.

cobra.sampling.step (sampler, x, delta, fraction=None, tries=0)
Sample a new feasible point from the point x in direction delta.

17.1. cobra 201

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix

cobra Documentation, Release 0.18.1

class cobra.sampling.ACHRSampler (model, thinning=100, nproj=None, seed=None)

Bases: cobra.sampling.hr._sampler.HRSampler
Artificial Centering Hit-and-Run sampler.
A sampler with low memory footprint and good convergence.
Parameters
* model (cobra.Model) — The cobra model from which to generate samples.

* thinning (int, optional) — The thinning factor of the generated sampling
chain. A thinning of 10 means samples are returned every 10 steps.

* nproj (int > 0, optional)-— How often to reproject the sampling point into
the feasibility space. Avoids numerical issues at the cost of lower sampling. If you
observe many equality constraint violations with sampler.validate you should lower
this number.

e seed (int > 0, optional) - Sets the random number seed. Initialized to the
current time stamp if None.

model
The cobra model from which the samples get generated.

Type cobra.Model
thinning
The currently used thinning factor.
Type int

n_samples
The total number of samples that have been generated by this sampler instance.

Type int

problem
A python object whose attributes define the entire sampling problem in matrix form. See docstring of
Problem.

Type collections.namedtuple

warmup
A matrix of with as many columns as reactions in the model and more than 3 rows containing a
warmup sample in each row. None if no warmup points have been generated yet.

Type numpy.matrix

retries
The overall of sampling retries the sampler has observed. Larger values indicate numerical instabili-
ties.

Type int

seed
Sets the random number seed. Initialized to the current time stamp if None.

Type int > 0, optional

nproj
How often to reproject the sampling point into the feasibility space.

Type int

fwd_idx
Has one entry for each reaction in the model containing the index of the respective forward variable.

Type numpy.array

202

Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

cobra Documentation, Release 0.18.1

rev_idx
Has one entry for each reaction in the model containing the index of the respective reverse variable.

Type numpy.array

prev
The current/last flux sample generated.

Type numpy.array

center
The center of the sampling space as estimated by the mean of all previously generated samples.

Type numpy.array

Notes

ACHR generates samples by choosing new directions from the sampling space’s center and the warmup
points. The implementation used here is the same as in the Matlab Cobra Toolbox [2]_ and uses only the
initial warmup points to generate new directions and not any other previous iterates. This usually gives
better mixing since the startup points are chosen to span the space in a wide manner. This also makes the
generated sampling chain quasi-markovian since the center converges rapidly.

Memory usage is roughly in the order of (2 * number reactions)*2 due to the required nullspace matrices
and warmup points. So large models easily take up a few GB of RAM.

References

__single_iteration (self)

sample (self, n, fluxes=True)
Generate a set of samples.

This is the basic sampling function for all hit-and-run samplers.
Parameters
* n (int) - The number of samples that are generated at once.

e fluxes (boolean)— Whether to return fluxes or the internal solver variables.
If set to False will return a variable for each forward and backward flux as well as
all additional variables you might have defined in the model.

Returns Returns a matrix with n rows, each containing a flux sample.

Return type numpy.matrix

Notes

Performance of this function linearly depends on the number of reactions in your model and the
thinning factor.

class cobra.sampling.OptGPSampler (model, processes=None, thinning=100, nproj=None,

seed=None)
Bases: cobra.sampling.hr _sampler.HRSampler

A parallel optimized sampler.
A parallel sampler with fast convergence and parallel execution. See [1]_ for details.
Parameters
* model (cobra.Model) — The cobra model from which to generate samples.

* processes (int, optional (default Configuration.
processes))— The number of processes used during sampling.

17.1. cobra

203

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://docs.python.org/3/library/functions.html#int

cobra Documentation, Release 0.18.1

* thinning (int, optional) — The thinning factor of the generated sampling
chain. A thinning of 10 means samples are returned every 10 steps.

* nproj (int > 0, optional)-— How often to reproject the sampling point into
the feasibility space. Avoids numerical issues at the cost of lower sampling. If you
observe many equality constraint violations with sampler.validate you should lower
this number.

e seed (int > 0, optional) - Sets the random number seed. Initialized to the
current time stamp if None.

model
The cobra model from which the samples get generated.

Type cobra.Model

thinning
The currently used thinning factor.

Type int

n_samples
The total number of samples that have been generated by this sampler instance.

Type int

problem
A python object whose attributes define the entire sampling problem in matrix form. See docstring of
Problem.

Type collections.namedtuple

warmup
A matrix of with as many columns as reactions in the model and more than 3 rows containing a
warmup sample in each row. None if no warmup points have been generated yet.

Type numpy.matrix

retries
The overall of sampling retries the sampler has observed. Larger values indicate numerical instabili-
ties.

Type int

seed
Sets the random number seed. Initialized to the current time stamp if None.

Type int > 0, optional

nproj
How often to reproject the sampling point into the feasibility space.

Type int

fwd_idx
Has one entry for each reaction in the model containing the index of the respective forward variable.

Type numpy.array

rev_idx
Has one entry for each reaction in the model containing the index of the respective reverse variable.

Type numpy.array

prev
The current/last flux sample generated.

Type numpy.array

center
The center of the sampling space as estimated by the mean of all previously generated samples.

204

Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

cobra Documentation, Release 0.18.1

Type numpy.array

Notes

The sampler is very similar to artificial centering where each process samples its own chain. Initial points
are chosen randomly from the warmup points followed by a linear transformation that pulls the points a
little bit towards the center of the sampling space.

If the number of processes used is larger than the one requested, number of samples is adjusted to the
smallest multiple of the number of processes larger than the requested sample number. For instance, if you
have 3 processes and request 8 samples you will receive 9.

Memory usage is roughly in the order of (2 * number reactions)*2 due to the required nullspace matrices
and warmup points. So large models easily take up a few GB of RAM. However, most of the large matrices
are kept in shared memory. So the RAM usage is independent of the number of processes.

References
sample (self, n, fluxes=True)
Generate a set of samples.
This is the basic sampling function for all hit-and-run samplers.
Parameters

* n (int) — The minimum number of samples that are generated at once (see
Notes).

e fluxes (boolean)— Whether to return fluxes or the internal solver variables.
If set to False will return a variable for each forward and backward flux as well as
all additional variables you might have defined in the model.

Returns Returns a matrix with n rows, each containing a flux sample.

Return type numpy.matrix

Notes

Performance of this function linearly depends on the number of reactions in your model and the
thinning factor.

If the number of processes is larger than one, computation is split across as the CPUs of your ma-
chine. This may shorten computation time. However, there is also overhead in setting up parallel
computation so we recommend to calculate large numbers of samples at once (n > 1000).

__getstate__ (self)
Return the object for serialization.

cobra.sampling.sample (model, n, method="optgp', thinning=100, processes=1, seed=None)

Sample valid flux distributions from a cobra model.
The function samples valid flux distributions from a cobra model. Currently we support two methods:

1. ‘optgp’ (default) which uses the OptGPSampler that supports parallel sampling [1]_. Requires
large numbers of samples to be performant (n < 1000). For smaller samples ‘achr’ might be
better suited.

or
2. ‘achr’ which uses artificial centering hit-and-run. This is a single process method with good conver-

gence [2]_.

Parameters

17.1. cobra 205

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix

cobra Documentation, Release 0.18.1

* model (cobra.Model)— The model from which to sample flux distributions.

* n (int) — The number of samples to obtain. When using ‘optgp’ this must be a
multiple of processes, otherwise a larger number of samples will be returned.

* method (str, optional)- The sampling algorithm to use.

* thinning (int, optional) — The thinning factor of the generated sampling
chain. A thinning of 10 means samples are returned every 10 steps. Defaults to 100
which in benchmarks gives approximately uncorrelated samples. If set to one will
return all iterates.

* processes (int, optional)— Only used for ‘optgp’. The number of pro-
cesses used to generate samples.

e seed (int > 0, optional)- The random number seed to be used. Initialized
to current time stamp if None.

Returns The generated flux samples. Each row corresponds to a sample of the fluxes and the
columns are the reactions.

Return type pandas.DataFrame

Notes

The samplers have a correction method to ensure equality feasibility for long-running chains, however this
will only work for homogeneous models, meaning models with no non-zero fixed variables or constraints (
right-hand side of the equalities are zero).

References
cobra.test

Subpackages

cobra.test.test_core

Subpackages

cobra.test.test_core.test_summary

Submodules
cobra.test.test_core.test_summary.test_metabolite_summary

Test functionalities of MetaboliteSummary.

206 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

cobra Documentation, Release 0.18.1

Module Contents

Functions

test_metabolite summary_to_table_ previlestsmetabolité su(mmdey, to_table() of previous so-

opt_solver, met) lution.
test_metabolite_summary_to_frame_previlestmetaboelite surmadglto_frame() of previous solu-
opt_solver, met) tion.

test_metabolite summary_to_table(model, Test metabolite summary._to_table().

opt_solver, met, names)

test_metabolite_ summary_to_frame(model, Test metabolite summary.to_frame().

opt_solver, met, names)

test_metabolite_summary_to_table_with Testimtadellite summary._to_table() (using FVA).
opt_solver, fraction, met)

test_metabolite summary_ to_frame_with Testmtdellite summary.to_frame() (using FVA).
opt_solver, fraction, met)

cobra.test.test_core.test_summary.test_metabolite_summary.test_metabolite_ summary to_tal

Test metabolite summary._to_table() of previous solution.

cobra.test.test_core.test_summary.test_metabolite_summary.test_metabolite_summary to_fr:

Test metabolite summary.to_frame() of previous solution.

cobra.test.test_core.test_summary.test_metabolite_summary.test_metabolite_summary_ to_tal

Test metabolite summary._to_table().

cobra.test.test_core.test_summary.test_metabolite_summary.test_metabolite_summary to_fr:

Test metabolite summary.to_frame().

cobra.test.test_core.test_summary.test_metabolite_summary.test_metabolite_summary_ to_tal

Test metabolite summary._to_table() (using FVA).

cobra.test.test_core.test_summary.test_metabolite_summary.test_metabolite_summary to_fr:

Test metabolite summary.to_frame() (using FVA).

17.1. cobra 207

cobra Documentation, Release 0.18.1

cobra.test.test_core.test_summary.test_model_summary

Test functionalities of ModelSummary.

Module Contents

Functions

test_model_summary_to_table previous_ skestSummarodel, table() of previous solution.

opt_solver, names)

test_model_summary_to_frame_previous_ skestSummanpotielframe() of previous solution.

opt_solver, names)

test_model_summary_to_table(model, Test model.summary()._to_table().
opt_solver, names)
test_model_ summary_ to_ frame(model, Test model.summary().to_frame().

opt_solver, names)

test_model_summary_to_table with_fva(mbekimodel summary._to_table() (using FVA).
opt_solver, fraction)

test_model_summary_to_frame_ with fva(mbedlmodel summary.to_frame() (using FVA).
opt_solver, fraction)

cobra.test.test_core.test_summary.test_model_summary.test_model_ summary to_table_ previot

Test Summary._to_table() of previous solution.

cobra.test.test_core.test_summary.test_model_summary.test_model_summary to_frame_ previot

Test Summary.to_frame() of previous solution.

cobra.test.test_core.test_summary.test_model_summary.test_model_summary_to_table (model,

Test model.summary()._to_table().

opt_solve
names)

cobra.test.test_core.test_summary.test_model_summary.test_model_summary_to_frame (model,

Test model.summary().to_frame().

opt_solve
names)

cobra.test.test_core.test_summary.test_model_summary.test_model_ summary to_table_with_£x

Test model summary._to_table() (using FVA).

cobra.test.test_core.test_summary.test_model_summary.test_model_ summary to_frame_ with_£x

Test model summary.to_frame() (using FVA).

208 Chapter 17. API Reference

cobra Documentation, Release 0.18.1

cobra.test.test_core.test_summary.test_reaction_summary

Test functionalities of ReactionSummary.

Module Contents

Functions

test_reaction_summary_ to_table(model, Testreaction summary._to_table().
rxn, names)

test_reaction_summary_to_frame(model, Testreaction summary.to_frame().
rxn, names)

cobra.test.test_core.test_summary.test_reaction_summary.test_reaction_summary_ to_table (x

Test reaction summary._to_table().

/4
v

cobra.test.test_core.test_summary.test_reaction_summary.test_reaction_ summary to_frame (s

Test reaction summary.to_frame().

Package Contents

Functions
captured_output() A context manager to test the [O summary methods.
check_11ine(output, expected_entries, pat- Ensure each expected entry is in the output.

tern=re.compile(’\s’))

check_in_1line(output, expected_entries, pat- Ensure each expected entry is contained in the output.
tern=re.compile(’\s’))

cobra.test.test_core.test_summary.captured_output ()
A context manager to test the IO summary methods.

cobra.test.test_core.test_summary.check_line (output, expected_entries, pat-
tern=re.compile('\s'))
Ensure each expected entry is in the output.

cobra.test.test_core.test_summary.check in_1line (output, expected_entries, pat-
tern=re.compile(\s'))
Ensure each expected entry is contained in the output.

17.1. cobra 209

/4
7

cobra Documentation, Release 0.18.1

Submodules

cobra.test.test_core.conftest

Module level fixtures

Module Contents

Functions

solved_mode I(request, model)

cobra.test.test_core.conftest.solver trials

cobra.test.test_core.conftest.solved_model (request, model)

cobra.test.test_core.test_configuration

Test functions of configuration.py

Module Contents

Functions
test_default_bounds() Verify the default bounds.
test_bounds() Test changing bounds.
test_solver() Test assignment of different solvers.
test_default_tolerance(model) Verify the default solver tolerance.
test_toy_model_tolerance_with_differerNerify that different default tolerance is respected by

Model.

test_tolerance_assignment(model) Test assignment of solver tolerance.

cobra.test.test_core.test_configuration.test_default_bounds ()
Verify the default bounds.

cobra.test.test_core.test_configuration.test_bounds ()
Test changing bounds.

cobra.test.test_core.test_configuration.test_solver ()
Test assignment of different solvers.

cobra.test.test_core.test_configuration.test_default_tolerance (model)
Verify the default solver tolerance.

cobra.test.test_core.test_configuration.test_toy model tolerance_with different_ default
Verify that different default tolerance is respected by Model.

cobra.test.test_core.test_configuration.test_tolerance_assignment (model)
Test assignment of solver tolerance.

210 Chapter 17. API Reference

cobra Documentation, Release 0.18.1

cobra.test.test_core.test_core_reaction

Test functions of reaction.py

Module Contents

Functions

test_gpr()

test_gpr_modification(model)

test_gene_knock_out(model)

test_str()

test_str_from model(model)

test_add metabolite_from solved model(solved_model)

test_add _metabolite_ benchmark(model,
benchmark, solver)

test_add _metabolite(model)

test_subtract_metabolite_ benchmark(model,
benchmark, solver)

test_subtract_metabolite(model, solver)

test_mass_balance(model)

test_build from_ string(model)

test_bounds_setter(model)

test_copy(model)

test_iadd(model)

test_add(model)

test_radd(model)

test_mul(model)

test_ sub(model)

test_removal_from model_retains_bounds(model)

test_set_bounds_scenario_ 1(model)

test_set_bounds_scenario_3(model)

test_set_bounds_scenario_4(model)

test_set_upper_before lower_bound_to_0(model)

test_set_bounds_scenario_2(model)

test_change bounds(model)

test_make_irreversible(model)

test_make_ reversible(model)

test_make_irreversible irreversible to_the other_ side(model)

test_make lhs_irreversible reversible(model)

test_model_less_ reaction(model)

test_knockout(model)

test_reaction_without_model()

test_weird_left_to_right_reaction_issue(tiny_toy_model)

test_one_left_to_right_reaction_set_positive_ub(tiny_toy_model)

test_irrev_reaction_set_negative_lb(model)

test_twist_irrev_right_to left_reaction to_left_to right(model)

test_set_1b higher than_ub sets_ub_to_new_I1b(model)

test_set_ub lower_ than_1b sets 1b_to_ new_ub(model)

test_add metabolites_combine_ true(model)

test_add _metabolites_combine_false(model)

test_reaction_imul(model)

test_remove_ from_mode l(model)

Continued on next page

171. cobra

211

cobra Documentation, Release 0.18.1

Table 65 — continued from previous page

test_change id _is reflected in solver(model)

test_repr_html_(model)

cobra.test.test_core.test_core_reaction.config
cobra.test.test_core.test_core_reaction.stable_optlang = ['glpk', 'cplex', 'gurobi']
cobra.test.test_core.test_core_reaction.test_gpr()
cobra.test.test_core.test_core_reaction.test_gpr_modification (model)
cobra.test.test_core.test_core_reaction.test_gene_knock_out (model)
cobra.test.test_core.test_core_reaction.test_str ()
cobra.test.test_core.test_core_reaction.test_str from model (model)
cobra.test.test_core.test_core_reaction.test_add_metabolite_from_solved_model (solved_model
cobra.test.test_core.test_core_reaction.test_add_metabolite_benchmark (model,
bench-
mark,
solver)
cobra.test.test_core.test_core_reaction.test_add_metabolite (model)
cobra.test.test_core.test_core reaction.test subtract metabolite benchmark (model,
bench-
mark,
solver)
cobra.test.test_core.test_core_reaction.test_subtract_metabolite (model,
solver)
cobra.test.test_core.test_core_reaction.test_mass_balance (model)
cobra.test.test_core.test_core_reaction.test_build_from_string (model)
cobra.test.test_core.test_core_reaction.test_bounds_setter (model)
cobra.test.test_core.test_core_reaction.test_copy (model)
cobra.test.test_core.test_core_reaction.test_iadd (model)
cobra.test.test_core.test_core_reaction.test_add (model)
cobra.test.test_core.test_core_reaction.test_radd (model)
cobra.test.test_core.test_core_reaction.test_mul (model)
cobra.test.test_core.test_core_reaction.test_sub (model)
cobra.test.test_core.test_core_reaction.test_removal_ from model_retains_bounds (model)
cobra.test.test_core.test_core_ reaction.test set bounds_ scenario_ 1 (model)
cobra.test.test_core.test_core_reaction.test_set_bounds_scenario_3 (model)
cobra.test.test_core.test_core_reaction.test_set_bounds_scenario_4 (model)
cobra.test.test_core.test_core_reaction.test_set_upper_before_ lower bound_to_0 (model)
cobra.test.test_core.test_core_reaction.test set bounds_scenario_2 (model)
cobra.test.test_core.test_core_reaction.test_change_bounds (model)
cobra.test.test_core.test_core_reaction.test_make_irreversible (model)
cobra.test.test_core.test_core reaction.test make reversible (model)
cobra.test.test_core.test_core_reaction.test_make_irreversible_irreversible_ to_the_othe:
cobra.test.test_core.test_core_reaction.test_make_ lhs_irreversible_ reversible (model)
212 Chapter 17. API Reference

cobra Documentation, Release 0.18.1

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

Test functions of dictlist.py

Module Contents

Functions

test_core_reaction

test_core_reaction.
test_core_reaction.
test_core_reaction.
test_core_reaction.
test_core_reaction.
test_core_reaction.
test_core_reaction.
test_core_reaction.
test_core_reaction.
test_core_reaction.
test_core_reaction.
test_core_reaction.
test_core_reaction.

test_core_reaction.

test_dictlist

.test_model less_reaction (model)

test_knockout (model)
test_reaction_without_model ()

test_weird left_to_right_reaction_issue (tfiny_toy_m
test_one_left_to_right_reaction_set_positive_ub
test_irrev_reaction_set_negative_lb (model)
test_twist_irrev _right_to_left_reaction_to_left_
test_set_1lb_higher_than_ ub_sets_ub_to_new_1b (moc
test_set_ub_lower than_lb sets_lb to_new_ ub (mode
test_add metabolites_combine_true (model)

test add metabolites combine false (model)
test_reaction_imul (model)
test_remove_from model (model)
test_change_id_is_reflected_in_solver (model)

test_repr html_ (model)

dict_1ist()

test_contains(dict_list)

test_ index(dict_list)

test_independent()

test_get_by_ any(dict_list)

test_append(dict_list)

test_insert(dict_list)

test_extend(dict_list)

test_iadd(dict_list)

test_add(dict_list)

test_sub(dict_list)

test_ 1sub(dict_list)

test_init_copy(dict_list)

test_slice(dict_list)

test_copy(dict_list)

test_deepcopy(dict_list)

test_pickle(dict_list)

test_query(dict_list)

test_removal()

test_set()

test_sort_and_reverse()

test_ dir(dict_list)

Continued on next page

17.1. cobra

213

cobra Documentation, Release 0.18.1

Table 66 — continued from previous page

test_union(dict_list)

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

cobra.test.test_core.

Test functions of gene.py

Module Contents

Functions

test_dictlist.

test_dictlist

test_dictlist

test_dictlist.

test_dictlist.

test_dictlist

test_dictlist.
test_dictlist.

test_dictlist.

test_dictlist

test_dictlist.

test_dictlist.

test_dictlist

test_dictlist.
test_dictlist.

test_dictlist.

test_dictlist

test_dictlist.

test_dictlist.

test_dictlist

test_dictlist

test_dictlist.

test_dictlist.

test_gene

dict_1list ()

.test_contains (dict_list)

.test_index (dict_list)

test_independent ()

test_get_by_any (dict_list)

.test_append (dict_list)

test_insert (dict_list)
test_extend (dict_list)

test_iadd (dict_list)

.test_add (dict_list)

test_sub (dict_list)

test_isub (dict_list)

.test_init_copy (dict_list)

test_slice (dict_list)
test_copy (dict_list)

test_deepcopy (dict_list)

.test_pickle (dict_list)

test_query (dict_list)

test_removal ()

.test_set ()

.test_sort_and reverse ()

test_dir (dict_list)

test_union (dict_list)

test_repr_html_(model)

cobra.test.test_core.test_gene.test_repr_html_ (model)

214

Chapter 17. API Reference

cobra Documentation, Release 0.18.1

cobra.test.test_core.test_group

Test functions of model.py

Module Contents

Functions

test_group_add_element s(model)

test_group_kind()

cobra.test.test_core.test_group.test_

cobra.test.test_core.test_group.test_

cobra.test.test_core.test_metabolite

Test functions of metabolite.py

Module Contents

Functions

group_add_elements (model)

group_kind ()

test_metabolite_formulal)

test_formula element_setting(model)

test_set_ id(solved_model)

test_remove from_ model(solved_model)

test_repr_ html_(model)

cobra.test.test_core.test_metabolite.
cobra.test.test_core.test_metabolite.
cobra.test.test_core.test_metabolite.
cobra.test.test_core.test_metabolite.

cobra.test.test_core.test_metabolite.

test_metabolite_formula()
test_formula_element_setting (model)
test_set_id (solved_model)
test_remove_from model (solved_model)

test_repr html_ (model)

17.1. cobra

215

cobra Documentation, Release 0.18.1

cobra.test.test_core.test_model

Test functions of model.py

Module Contents

Functions

same_ex(exl, ex2) Compare to expressions for mathematical equality.

test_add_remove_reaction_benchmark(model,
benchmark, solver)

test_add_metabolite(model)

test_remove metabolite subtractive(model)

test_remove metabolite destructive(model)

test_compartment s(model)

test_add_react ion(model)

test_add_reaction_context(model)

test_add _reaction_from_ other_ model(model)

test_model_remove_ reaction(model)

test_reaction_remove(model)

test_reaction_delete(model)

test_remove_ gene(model)

test_group_model_reaction_association(model)

test_group_members_add_to_model(model)

test_group_loss_of_elements(model)

test_exchange_react ions(model)

test_add boundary(model, metabolites, reac-
tion_type, prefix)

test_add _boundary_ context(model,
metabolites, reaction_type, prefix)

test_add_existing boundary(model,
metabolites, reaction_type)

test_copy benchmark(model, solver, bench-
mark)

test_copy_benchmark_large_model(large_model,
solver, benchmark)

test_copy(model)

test_copy with_groups(model)

test_deepcopy_benchmark(model, bench-
mark)

test_deepcopy(model)

test_add _reaction_orphans(model)

test_merge_models(model, tiny_toy_model)

test_change objective benchmark(model,
benchmark, solver)

test_get_objective direction(model)

test_set_objective direction(model)

test_slim optimize(model)

test_optimize(model, solver)

test_change ob ject ive(model)

test_problem properties(model)

test_solution_data_ frame(model)

test_context_manager(model)

Continued on next page

216

Chapter 17. API Reference

cobra Documentation, Release 0.18.1

Table 70 — continued from previous page

test_objective coefficient_reflects changed_ objective(model)

test_change_objective_through objective_coefficient(model)

test_transfer_objective(model)

test_model_from other_model(model)

test_add_ reactions(model)

test_add _reactions_single existing(model)

test_add _reactions_duplicate(model)

test_add _cobra_reaction(model)

test_all_objects _point_to_all_other correct_objects(model)

test_objects _point_to correct_other after copy(model)

test_remove reactions(model)

test_objective(model)

test_change object ive(model)

test_set_reaction_objective(model)

test_set_reaction_objective_str(model)

test_invalid objective raises(model)

test_solver_change(model)

test_no _change_ for same_solver(model)

test_invalid _solver_change_ raises(model)

test_change solver to cplex_and check_ copy_ works(model)

test_copy_preserves_existing_ solution(solved_model)

test_repr_html_(model)

cobra.test.
cobra.test.

cobra.test.

cobra.test.

cobra.test

cobra.test
cobra.test
cobra.test
cobra.test
cobra.test
cobra.test
cobra.test
cobra.test
cobra.test
cobra.test
cobra.test
cobra.test
cobra.test

cobra.test

test_core.test_model.stable_optlang =

['glpk', 'cplex', 'gurobi']

test_core.test_model.optlang solvers

test_core.test_model.same_ex (exl, ex2)
Compare to expressions for mathematical equality.

test_core.test_model.test add remove reaction benchmark (model,

.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.

.test_core.

test_model
test_model
test_model
test_model
test_model
test_model
test_model
test_model
test_model
test_model
test_model
test_model
test_model
test_model

test_model

bench-
mark,
solver)

.test_add metabolite (model)
.test_remove_metabolite_ subtractive (model)
.test_remove_metabolite_destructive (model)
.test_compartments (model)

.test_add reaction (model)

.test_add reaction_context (model)
.test_add_reaction_ from_other_model (model)
.test_model_ remove_ reaction (model)
.test_reaction_remove (model)
.test_reaction_delete (model)
.test_remove_gene (model)
.test_group_model_reaction_association (model)
.test_group_members_add_to_model (model)
.test_group_loss_of_elements (model)

.test_exchange_ reactions (model)

17.1. cobra

217

cobra Documentation, Release 0.18.1

cobra.

cobra.

cobra.

cobra.

cobra.

cobra.
cobra.
cobra.
cobra.
cobra.
cobra.

cobra.

cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.

cobra.

test

test

test

test

test

test
test
test
test
test
test

test

test
test
test
test
test
test
test
test
test
test
test
test
test
test
test
test
test
test
test

test

.test_core.

.test_core.

.test_core.

.test_core.

.test_core.

.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.

.test_core.

.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.
.test_core.

.test_core.

test_model

test_model

test_model

test_model

test_model

test_model
test_model
test_model
test_model
test_model
test_model

test_model

test_model
test_model
test_model
test_model
test_model
test_model
test_model
test_model
test_model
test_model
test_model
test_model
test_model
test_model
test_model
test_model
test_model
test_model
test_model

test_model

.test_add_boundary (model,

.test_add_existing_boundary (model,

metabolites,
tion_type, prefix)

.test_add_boundary_context (model, metabolites,
reaction_type, pre-

Jix)

lites,
tion_type)

.test_copy_benchmark (model, solver, benchmark)

.test_copy_benchmark_large_model (large_model,

solver,
bench-
mark)

.test_copy (model)
.test_copy_with_groups (model)
.test_deepcopy_benchmark (model, benchmark)
.test_deepcopy (model)
.test_add_reaction_orphans (model)
.test_merge_models (model, tiny_toy_model)

.test_change_objective_benchmark (model,

bench-
mark,
solver)

.test_get_objective_direction (model)
.test_set_objective_direction (model)
.test_slim_optimize (model)
.test_optimize (model, solver)
.test_change_objective (model)
.test_problem_properties (model)
.test_solution_data_ frame (model)
.test_context_manager (model)
.test_objective coefficient_ reflects_ changed objective (m
.test_change_objective_through_objective_coefficient (mode
.test_transfer_ objective (model)
.test_model from other_model (model)
.test_add_reactions (model)
.test_add_reactions_single_existing (model)
.test_add_reactions_duplicate (model)
.test_add_cobra_ reaction (model)
.test_all_objects_point_to_all_other correct_objects (mode
.test_objects_point_to_correct_other_ after copy (model)
.test_remove_reactions (model)

.test_obijective (model)

218

Chapter 17. API Reference

reac-

metabo-
reac-

cobra Documentation, Release 0.18.1

cobra.test.test_core.test_model.test_change_objective (model)
cobra.test.test_core.test_model.test_set_reaction_objective (model)
cobra.test.test_core.test_model.test_set_reaction_objective_str (model)
cobra.test.test_core.test_model.test_invalid_objective_raises (model)
cobra.test.test_core.test_model.test_solver_change (model)
cobra.test.test_core.test_model.test_no_change_ for_same_solver (model)
cobra.test.test_core.test_model.test_invalid_solver_change_raises (model)
cobra.test.test_core.test_model .test_change_solver_to_cplex_and_check_copy_works (model)
cobra.test.test_core.test_model.test_copy_ preserves_existing_solution (solved_model)

cobra.test.test_core.test_model.test_repr html_ (model)

cobra.test.test_core.test_solution

Test functions of solution.py

Module Contents

Functions

test_solution_contains_only reaction_specific values(solved_model)

cobra.test.test_core.test_solution.test_solution_contains_only reaction_ specific_values

cobra.test.test_io

Submodules

cobra.test.test_io.conftest

Contains module level fixtures and utility functions.

Module Contents

Functions
mini_model(data_directory) Fixture for mini model.
compare_models(model_1, model_2) Compare two models (only for testing purposes).

cobra.test.test_io.conftest.mini_model (data_directory)
Fixture for mini model.

cobra.test.test_io.conftest.compare_models (model_I, model_2)
Compare two models (only for testing purposes).

17.1. cobra 219

cobra Documentation, Release 0.18.1

cobra.test.test_io.test_annotation

Module Contents

Functions

_check_sbml_annotations(model) Checks the annotations from the annotation.xml.
test_read_sbml_annotations(data_directory) Test reading and writing annotations.
test_read write_sbml_annotations(data_difBetorgading and writing annotations.

tmp_path)

cobra.test.test_io.test_annotation._check_sbml_ annotations (model)
Checks the annotations from the annotation.xml.

cobra.test.test_io.test_annotation.test_read_ sbml_annotations (data_directory)
Test reading and writing annotations.

cobra.test.test_io.test_annotation.test_read write_sbml_annotations (data_directory,

tmp_path)
Test reading and writing annotations.

cobra.test.test_io.test_annotation_format
Module Contents

Functions

test_load_json_model_valid(data_directory, Testloading a valid annotation from JSON.

tmp_path)

test_load_json_model_invalid(data_directorilest that loading an invalid annotation from JSON
raises TypeError

cobra.test.test_io.test_annotation_format.test_load_json_model_valid (data_directory,
tmp_path)
Test loading a valid annotation from JSON.

cobra.test.test_io.test_annotation_format.test_load json_model_ invalid (data_directory)
Test that loading an invalid annotation from JSON raises TypeError

cobra.test.test_io.test_io order
Module Contents

Functions

tmp_path(tmpdir_factory)
minimized_shuffle(small_model)

minimized sorted(minimized_shuffle)
minimized reverse(minimized_shuffle)
template(request, minimized_shuffle, mini-
mized_reverse, minimized_sorted)
attribute(request)

Continued on next page

220 Chapter 17. API Reference

cobra Documentation, Release 0.18.1

Table 75 — continued from previous page

get_ ids(iterable)

test_io_order(attribute, read, write, ext, tem-
plate, tmp_path)

cobra.test
cobra.test
cobra.test
cobra.test
cobra.test

cobra.test

cobra.test
cobra.test

cobra.test

cobra.test.

.test_1io.
.test_io.
.test_io.
.test_1io.
.test_io.

.test_io.

.test_io.
.test_io.

.test_io.

test_io

test_io_order

test_io_order

.test_json

Test functionalities of json.py

Module Contents

Functions

test_io_order.

test_io_order.

test_io_order.

test_io_order.

test_io_order.
test_io_order.

test_io_order.

LOGGER

tmp_path (tmpdir_factory)

.minimized shuffle (small_model)

.minimized_sorted (minimized_shuffle)

minimized_reverse (minimized_shuffle)

template (request, minimized_shuffle, mini-
mized_reverse, minimized_sorted)

attribute (request)
get_ids (iterable)

test_io_order (attribute, read, write, ext, template,
tmp_path)

test_validate_ json(data_directory)

Validate file according to JSON-schema.

test_load_json_model(data_directory,

mini_model)

Test the reading of JSON model.

test_save_ json_mode l(tmpdir, mini_model) Test the writing of JSON model.

cobra.test.test_io.test_Jjson.test_validate_json (data_directory)
Validate file according to JSON-schema.

cobra.test.test_io.test_Jjson.test_load_json_model (data_directory, mini_model)
Test the reading of JSON model.

cobra.test.test_io.test_json.test_save_json_model (rmpdir, mini_model)
Test the writing of JSON model.

17.1. cobra

221

cobra Documentation, Release 0.18.1

cobra.test.test_io.test_mat

Test functionalities provided by mat.py

Module Contents

Functions
raven_mode I(data_directory) Fixture for RAVEN model.
test_load matlab_model(data_directory, Test the reading of MAT model.
mini_model, raven_model)
test_save_matlab_mode I1(tmpdir, Test the writing of MAT model.

mini_model, raven_model)

cobra.test.test_io.test_mat.scipy

cobra.test.test_io.test_mat.raven_model (data_directory)
Fixture for RAVEN model.

cobra.test.test_io.test_mat.test_load_matlab_model (data_directory, mini_model,

raven_model)
Test the reading of MAT model.

cobra.test.test_io.test_mat.test_save_matlab_model (tmpdir, mini_model,

raven_model)
Test the writing of MAT model.

cobra.test.test_io.test_notes

Module Contents

Functions

test_notes(tmp_path) Testing if model notes are written in SBML

cobra.test.test_io.test_notes.test_notes (tmp_path)
Testing if model notes are written in SBML

cobra.test.test_io.test_pickle

Test data storage and recovery using pickle.

Module Contents

Functions

test_read_pickle(data_directory, mini_model, Test the reading of model from pickle.
load_function)

test_write_pickle(tmpdir, mini_model, Test the writing of model to pickle.
dump_function)

222 Chapter 17. API Reference

cobra Documentation, Release 0.18.1

cobra.test.test_io.test_pickle.cload

cobra.test.test_io.test_pickle.test_read_pickle (data_directory, mini_model,

load_function)
Test the reading of model from pickle.

cobra.test.test_io.test_pickle.test_write_pickle (tmpdir, mini_model,

dump_function)
Test the writing of model to pickle.

cobra.test.test_io.test_sbml

Testing SBML functionality based on libsbml.

Module Contents

Classes
TestCobraIO Tests the read and write functions.
Functions
test_validate(trial, data_directory) Test validation function.
1o_trial(request, data_directory)
test_filehandle(data_directory, tmp_path) Test reading and writing to file handle.
test_from_sbml_string(data_directory) Test reading from SBML string.
test_model_history(tmp_path) Testing reading and writing of ModelHistory.
test_groups(data_directory, tmp_path) Testing reading and writing of groups

test_missing flux_boundsIl(data_directory)
test_missing_flux_boundsZ(data_directory)

test_validate(trial, data_directory) Test validation function.

test_validation warnings(data_directory) Test the validation warnings.
test_infinity_bounds(data_directory, Test infinity bound example.

tmp_path)

test_boundary_ conditions(data_directory) Test infinity bound example.
test_gprs(data_directory, tmp_path) Test that GPRs are written and read correctly
test_identifiers_annotation()

test_smbl_with_notes(data_directory, Test that NOTES in the RECON 2.2 style are written
tmp_path) and read correctly

cobra.test.test_io.test_sbml.config
cobra.test.test_io.test_sbml. jsonschema
cobra.test.test_io.test_sbml.IOTrial
cobra.test.test_jo.test_sbml.trials
cobra.test.test_io.test_sbml.trial names

cobra.test.test_io.test_sbml.test_validate (trial, data_directory)
Test validation function.

class cobra.test.test_io.test_sbml.TestCobralIO
Tests the read and write functions.

classmethod compare_models (cls, name, modell, model2)

17.1. cobra 223

cobra Documentation, Release 0.18.1

classmethod extra_comparisons (cls, name, modell, model2)

test_read_1 (self, io_trial)

test_read_2 (self, io_trial)

test_write_1 (self, io_trial)

test_write_2 (self, io_trial)
cobra.test.test_io.test_sbml.io_trial (request, data_directory)

cobra.test.test_io.test_sbml.test_filehandle (data_directory, tmp_path)
Test reading and writing to file handle.

cobra.test.test_io.test_sbml.test_from_ sbml_string (data_directory)
Test reading from SBML string.

cobra.test.test_io.test_sbml.test_model_history (tmp_path)
Testing reading and writing of ModelHistory.

cobra.test.test_io.test_sbml.test_groups (data_directory, tmp_path)
Testing reading and writing of groups

cobra.test.test_io.test_sbml.test_missing flux boundsl (data_directory)
cobra.test.test_io.test_sbml.test_missing flux bounds2 (data_directory)

cobra.test.test_io.test_sbml.test_validate (data_directory)
Test the validation code.

cobra.test.test_io.test_sbml.test_wvalidation_warnings (data_directory)
Test the validation warnings.

cobra.test.test_io.test_sbml.test_infinity bounds (data_directory, tmp_path)
Test infinity bound example.

cobra.test.test_io.test_sbml.test_boundary_ conditions (data_directory)
Test infinity bound example.

cobra.test.test_io.test_sbml.test_gprs (data_directory, tmp_path)
Test that GPRs are written and read correctly

cobra.test.test_io.test_sbml.test_identifiers_annotation ()

cobra.test.test_io.test_sbml.test_smbl_with_notes (data_directory, tmp_path)
Test that NOTES in the RECON 2.2 style are written and read correctly

cobra.test.test_io.test_yaml

Test functionalities provided by yaml.py

Module Contents

Functions

test_load_yaml_model(data_directory, Test the reading of YAML model.
mini_model)
test_save_yaml_mode I(tmpdir, mini_model)

cobra.test.test_io.test_yaml.test_load_yaml_model (data_directory, mini_model)
Test the reading of YAML model.

cobra.test.test_io.test_yaml.test_save_yaml_model (tmpdir, mini_model)

224 Chapter 17. API Reference

cobra Documentation, Release 0.18.1

Submodules

cobra.test.conftest

Module Contents

Functions

pytest_addoption(parser)

data_directory()

empty_once()

empty_mode l(empty_once)

small_model()

mode1(small_model)

large_once()

large_model(large_once)

medium_model()

salmonella(medium_model)

solved_model(data_directory)

tiny_ toy_model()

fva_results(data_directory)

pfba_fva_ results(data_directory)

opt_solver(request)

metabolites(model, request)

cobra

cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.

cobra.

.test
test
test
test
test
test
test
test
test
test
test
test
test
test
test
test
test

test

.conftest
.conftest
.conftest
.conftest
.conftest
.conftest
.conftest
.conftest
.conftest
.conftest
.conftest
.conftest
.conftest
.conftest
.conftest
.conftest
.conftest

.conftest

.pytest_addoption (parser)
.data_directory ()
.empty_once ()
.empty_model (empty_once)
.small model ()

.model (small_model)
.large_once ()
.large_model (large_once)
.medium model ()
.salmonella (medium_model)
.solved_model (data_directory)
.tiny_ toy_model ()

.fva_results (data_directory)

.stable_optlang = ['glpk',
.all_solvers
.opt_solver (request)

.metabolites (model, request)

.pfba_fva_results (data_directory)

'cplex',

'gurobi']

17.1. cobra

225

cobra Documentation, Release 0.18.1

cobra.test.test_manipulation

Module Contents

Classes

TestManipulation

Test functions in cobra.manipulation

class cobra.test.test_manipulation.TestManipulation

Test functions in cobra.manipulation

test_escape_ids (self, model)

test_rename_gene (self, model)
test_gene_knockout_computation (self, salmonella)
test_remove_genes (self)

test_sbo_annotation (self, model)
test_validate_formula_compartment (self, model)
test_validate_mass_balance (self, model)
test_prune_unused_mets_output_type (self, model)
test_prune_unused_mets_functionality (self, model)
test_prune_unused_rxns_output_type (self, model)

test_prune_unused_rxns_functionality (self, model)

cobra.test.test_medium

Module Contents

Classes

TestModelMedium

TestTypeDetection

TestMinimalMedia

TestErrorsAndExceptions

class cobra.test.test_medium.TestModelMedium

test_model_medium (self, model)

class cobra.test.test_medium.TestTypeDetection

test_external_ compartment (self, model)
test_multi_external (self, model)
test_exchange (self, model)

test_demand (self, model)

test_sink (self, model)

test_sbo_terms (self, model)

226

Chapter 17. API Reference

cobra Documentation, Release 0.18.1

class cobra.test.test_medium.TestMinimalMedia

test_medium_linear (self, model)

test_medium_mip (self, model)
test_medium_alternative_mip (self, model)
test_benchmark_medium_linear (self, model, benchmark)
test_benchmark_medium_mip (self, model, benchmark)
test_medium_exports (self, model)
test_open_exchanges (self, model)

class cobra.test.test_medium.TestErrorsAndExceptions

test_no_boundary_reactions (self, empty_model)
test_no_names_or_boundary_reactions (self, empty_model)

test_bad_exchange (self, model)

Package Contents

Functions

read_sbml_modeI(filename, number=float, Reads SBML model from given filename.
f_replace=F_REPLACE, **kwargs)

create_test_model(model_name=’salmonella’) Returns a cobra model for testing
test_all(args=None) alias for running all unit-tests on installed cobra

cobra.test.read sbml_model (filename, number=float, f_replace=F _REPLACE, **kwargs)
Reads SBML model from given filename.

3

If the given filename ends with the suffix “.gz” (for example, “myfile.xml.gz’), the file is assumed to
be compressed in gzip format and will be automatically decompressed upon reading. Similarly, if the
given filename ends with “’.zip” or ’.bz2’, the file is assumed to be compressed in zip or bzip2 format
(respectively). Files whose names lack these suffixes will be read uncompressed. Note that if the file is in
zip format but the archive contains more than one file, only the first file in the archive will be read and the
rest ignored.

To read a gzip/zip file, libSBML needs to be configured and linked with the zlib library at compile time. It
also needs to be linked with the bzip2 library to read files in bzip2 format. (Both of these are the default
configurations for libSBML.)

This function supports SBML with FBC-v1 and FBC-v2. FBC-v1 models are converted to FBC-v2 models
before reading.

The parser tries to fall back to information in notes dictionaries if information is not available in the FBC
packages, e.g., CHARGE, FORMULA on species, or GENE_ASSOCIATION, SUBSYSTEM on reactions.

Parameters

e filename (path to SBML file, or SBML string, or SBML file
handle) - SBML which is read into cobra model

* number (data type of stoichiometry: {float, int}) — In which
data type should the stoichiometry be parsed.

* f replace (dict of replacement functions for id
replacement) — Dictionary of replacement functions for gene, specie, and

17.1. cobra 227

cobra Documentation, Release 0.18.1

reaction. By default the following id changes are performed on import: clip G_ from
genes, clip M_ from species, clip R_ from reactions If no replacements should be
performed, set f_replace={}, None

Returns

Return type cobra.core.Model

Notes

Provided file handles cannot be opened in binary mode, i.e., use

with open(path, “r” as f): read_sbml_model(f)

File handles to compressed files are not supported yet.
cobra.test.pytest
cobra.test.cobra_directory
cobra.test.cobra_location
cobra.test.data_dir

cobra.test.create_test_model (model_name='salmonella’)
Returns a cobra model for testing

model_name: str One of ‘ecoli’, ‘textbook’, or ‘salmonella’, or the path to a pickled cobra.Model

cobra.test.test_all (args=None)
alias for running all unit-tests on installed cobra

cobra.util
Submodules
cobra.util.array
Module Contents

Functions

create stoichiometric_matrix(model, ar-
ray_type="dense’, dtype=None)

Return a stoichiometric array representation of the
given model.

nullspace(A, atol=le-13, rtol=0)

Compute an approximate basis for the nullspace of A.

constraint_matrices(model, ar-
ray_type="dense’, include_vars=False, zero_tol=1le-
06)

Create a matrix representation of the problem.

cobra.util.array.create_stoichiometric_matrix (model,

array_type='dense’',
dtype=None)

Return a stoichiometric array representation of the given model.

The the columns represent the reactions and rows represent metabolites. S[i,j] therefore contains the quantity
of metabolite i produced (negative for consumed) by reaction j.

Parameters

* model (cobra.Model) — The cobra model to construct the matrix for.

* array_type (string) - The type of array to construct. if ‘dense’, return a stan-

228

Chapter 17. API Reference

cobra Documentation, Release 0.18.1

dard numpy.array, ‘dok’, or ‘lil” will construct a sparse array using scipy of the cor-
responding type and ‘DataFrame’ will give a pandas DataFrame with metabolite
indices and reaction columns

» dtype (data-type)— The desired data-type for the array. If not given, defaults to
float.

Returns The stoichiometric matrix for the given model.
Return type matrix of class dtype

cobra.util.array.nullspace (A, atol=1e-13, rtol=0)
Compute an approximate basis for the nullspace of A. The algorithm used by this function is based on the
singular value decomposition of A.

Parameters

* A(numpy.ndarray)— A should be at most 2-D. A 1-D array with length k will be
treated as a 2-D with shape (1, k)

* atol (float) — The absolute tolerance for a zero singular value. Singular values
smaller than atol are considered to be zero.

e rtol (float) — The relative tolerance. Singular values less than rtol*smax are
considered to be zero, where smax is the largest singular value.

* both atol and rtol are positive, the combined tolerance
is the (If)-

e of the two; that is:: (maximum)-
e = max (atol, rtol * smax) (tol)-

* values smaller than tol are considered to be zero.
(Singular) -

Returns If A is an array with shape (m, k), then ns will be an array with shape (k, n), where
n is the estimated dimension of the nullspace of A. The columns of ns are a basis for the
nullspace; each element in numpy.dot(A, ns) will be approximately zero.

Return type numpy.ndarray

Notes

Taken from the numpy cookbook.

cobra.util.array.constraint_matrices (model, array_type='dense', include_vars=False,

zero_tol=1e-06)
Create a matrix representation of the problem.

This is used for alternative solution approaches that do not use optlang. The function will construct the
equality matrix, inequality matrix and bounds for the complete problem.

Notes

To accomodate non-zero equalities the problem will add the variable “const_one” which is a variable that
equals one.

Parameters
* model (cobra.Model)— The model from which to obtain the LP problem.

* array_type (string) - The type of array to construct. if ‘dense’, return a stan-
dard numpy.array, ‘dok’, or ‘lil” will construct a sparse array using scipy of the cor-
responding type and ‘DataFrame’ will give a pandas DataFrame with metabolite
indices and reaction columns.

17.1. cobra 229

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

cobra Documentation, Release 0.18.1

* zero_tol (f1oat) - The zero tolerance used to judge whether two bounds are the
same.

Returns

A named tuple consisting of 6 matrices and 2 vectors: - “equalities” is a matrix S such
that S*vars = b. It includes a row

for each constraint and one column for each variable.

* ”’b” the right side of the equality equation such that S*vars = b.

* “inequalities” is a matrix M such that Ib <= M*vars <= ub. It contains a row for each
inequality and as many columns as variables.

* ”bounds” is a compound matrix [Ib ub] containing the lower and upper bounds for
the inequality constraints in M.

 “variable_fixed” is a boolean vector indicating whether the variable at that index is
fixed (lower bound == upper_bound) and is thus bounded by an equality constraint.

* “variable_bounds” is a compound matrix [Ib ub] containing the lower and upper
bounds for all variables.

Return type collections.namedtuple

cobra.util.context

Module Contents

Classes
HistoryManager Record a list of actions to be taken at a later time.
Used to
Functions
get_context(obj) Search for a context manager
resettable(f) A decorator to simplify the context management of

simple object

class cobra.util.context.HistoryManager
Bases: object

Record a list of actions to be taken at a later time. Used to implement context managers that allow temporary
changes to a Mode 1.

__call__ (self, operation)
Add the corresponding method to the history stack.

Parameters operation (function) — A function to be called at a later time

reset (self)
Trigger executions for all items in the stack in reverse order

cobra.util.context.get_context (obj)
Search for a context manager

cobra.util.context.resettable (f)
A decorator to simplify the context management of simple object attributes. Gets the value of the attribute

230 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object

cobra Documentation, Release 0.18.1

prior to setting it, and stores a function to set the value to the old value in the HistoryManager.

cobra.util.solver

Additional helper functions for the optlang solvers.

All functions integrate well with the context manager, meaning that all operations defined here are automatically

reverted when used in a with model: block.

The functions defined here together with the existing model functions should allow you to implement custom flux

analysis methods with ease.

Module Contents

Functions

linear reaction_coefficients(model, re-
actions=None)

Coefficient for the reactions in a linear objective.

_valid_atoms(model, expression)

Check whether a sympy expression references the
correct variables.

set_objective(model, value, additive=False)

Set the model objective.

interface_ to_str(interface)

Give a string representation for an optlang interface.

get_solver_name(mip=False, qp=False)

Select a solver for a given optimization problem.

choose_solver(model, solver=None, qp=False)

Choose a solver given a solver name and model.

add_cons_vars_to_problem(model, what,
**kwargs)

Add variables and constraints to a Model’s solver ob-
ject.

remove_cons_vars_from problem(model,
what)

Remove variables and constraints from a Model’s
solver object.

add_absolute_expression(model, expres-
sion, name='abs_var’, ub=None, difference=0,
add=True)

Add the absolute value of an expression to the model.

fix_objective_as_constraint(model, frac-
tion=1, bound=None, name="fixed_objective_{}")

Fix current objective as an additional constraint.

check_solver_ status(status,
raise_error=False)

Perform standard checks on a solver’s status.

assert_optimal(model, message="optimization
failed’)

Assert model solver status is optimal.

add_1lp_feasibility(model)

Add a new objective and variables to ensure a feasible
solution.

add_lexicographic_constraints(model,
objectives, objective_direction="max")

Successively optimize separate targets in a specific or-
der.

cobra.util.solver.solvers
cobra.util.solver.qgp_solvers =

cobra.util.solver.has_primals

['cplex',

'gurobi']

cobra.util.solver.linear_reaction_coefficients (model, reactions=None)

Coefficient for the reactions in a linear objective.

Parameters

* model (cobra model) - the model object that defined the objective

* reactions (Iist) — an optional list for the reactions to get the coefficients for.

All reactions if left missing.

17.1. cobra

231

https://docs.python.org/3/library/stdtypes.html#list

cobra Documentation, Release 0.18.1

Returns A dictionary where the key is the reaction object and the value is the corresponding
coefficient. Empty dictionary if there are no linear terms in the objective.

Return type dict

cobra.util.solver._valid_atoms (model, expression)
Check whether a sympy expression references the correct variables.

Parameters
* model (cobra.Model) — The model in which to check for variables.
* expression (sympy.Basic)— A sympy expression.
Returns True if all referenced variables are contained in model, False otherwise.
Return type boolean

cobra.util.solver.set_objective (model, value, additive=False)
Set the model objective.

Parameters
* model (cobra model)— The model to set the objective for

* value (model.problem.Objective,) - e.g. opt-
lang.glpk_interface.Objective, sympy.Basic or dict

If the model objective is linear, the value can be a new Objective object or a dictio-
nary with linear coefficients where each key is a reaction and the element the new
coefficient (float).

If the objective is not linear and additive is true, only values of class Objective.

e additive (boolmodel.reactions.Biomass_Ecoli_core.bounds =
(0.1, 0.1))-Iftrue, add the terms to the current objective, otherwise start with
an empty objective.

cobra.util.solver.interface_to_str (interface)
Give a string representation for an optlang interface.

Parameters interface (string, ModuleType)-Full name of the interface in optlang
or cobra representation. For instance ‘optlang.glpk_interface’ or ‘optlang-glpk’.

Returns The name of the interface as a string
Return type string

cobra.util.solver.get_solver_name (mip=False, gp=False)
Select a solver for a given optimization problem.

Parameters

* mip (bool) — Does the solver require mixed integer linear programming capabili-
ties?

* gp (bool)—Does the solver require quadratic programming capabilities?
Returns The name of feasible solver.
Return type string
Raises SolverNotFound — If no suitable solver could be found.

cobra.util.solver.choose_solver (model, solver=None, gp=False)
Choose a solver given a solver name and model.

This will choose a solver compatible with the model and required capabilities. Also respects model.solver
where it can.

Parameters

* model (a cobra model) - The model for which to choose the solver.

232 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

e solver (str, optional)- The name of the solver to be used.

* gp (boolean, optional)— Whether the solver needs Quadratic Programming
capabilities.

Returns solver — Returns a valid solver for the problem.
Return type an optlang solver interface
Raises SolverNotFound - If no suitable solver could be found.

cobra.util.solver.add cons_vars_to_problem (model, what, **kwargs)
Add variables and constraints to a Model’s solver object.

Useful for variables and constraints that can not be expressed with reactions and lower/upper bounds. Will
integrate with the Model’s context manager in order to revert changes upon leaving the context.

Parameters

e model (a cobra model) — The model to which to add the variables and con-
straints.

e what (list or tuple of optlang variables or constraints.)
— The variables or constraints to add to the model. Must be of class
model.problem.Variable or model.problem.Constraint.

* xxkwargs (keyword arguments)— passed to solver.add()

cobra.util.solver.remove_cons_vars_from_problem (model, what)
Remove variables and constraints from a Model’s solver object.

Useful to temporarily remove variables and constraints from a Models’s solver object.

Parameters

* model (a cobra model) - The model from which to remove the variables and
constraints.

e what (list or tuple of optlang variables or constraints.)
— The variables or constraints to remove from the model. Must be of class
model.problem.Variable or model.problem.Constraint.

cobra.util.solver.add_absolute_expression (model, expression, name='abs_var',
ub=None, difference=0, add=True)
Add the absolute value of an expression to the model.

Also defines a variable for the absolute value that can be used in other objectives or constraints.
Parameters
* model (a cobra model) - The model to which to add the absolute expression.

* expression (A sympy expression)— Mustbe a valid expression within the
Model’s solver object. The absolute value is applied automatically on the expression.

* name (string) - The name of the newly created variable.
* ub (positive float)- The upper bound for the variable.

* difference (positive float) - The difference between the expression and
the variable.

¢ add (bool)— Whether to add the variable to the model at once.

Returns A named tuple with variable and two constraints (upper_constraint, lower_constraint)
describing the new variable and the constraints that assign the absolute value of the ex-
pression to it.

Return type namedtuple

17.1. cobra 233

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

cobra.util.solver.fix objective_as_constraint (model, fraction=1, bound=None,

name= fixed_objective_{}')
Fix current objective as an additional constraint.

When adding constraints to a model, such as done in pFBA which minimizes total flux, these constraints can
become too powerful, resulting in solutions that satisfy optimality but sacrifices too much for the original
objective function. To avoid that, we can fix the current objective value as a constraint to ignore solutions
that give a lower (or higher depending on the optimization direction) objective value than the original model.

When done with the model as a context, the modification to the objective will be reverted when exiting that
context.

Parameters
* model (cobra.Model)— The model to operate on
» fraction (float)-The fraction of the optimum the objective is allowed to reach.

* bound (float, None)-The bound to use instead of fraction of maximum opti-
mal value. If not None, fraction is ignored.

* name (st r)— Name of the objective. May contain one {} placeholder which is filled
with the name of the old objective.

Returns

Return type The value of the optimized objective * fraction

cobra.util.solver.check_solver_ status (status, raise_error=False)

Perform standard checks on a solver’s status.

cobra.util.solver.assert_optimal (model, message='optimization failed’)

Assert model solver status is optimal.
Do nothing if model solver status is optimal, otherwise throw appropriate exception depending on the status.
Parameters
¢ model (cobra.Model) — The model to check the solver status for.

* message (str (optional))—Message to for the exception if solver status was
not optimal.

cobra.util.solver.add lp feasibility (model)

Add a new objective and variables to ensure a feasible solution.

The optimized objective will be zero for a feasible solution and otherwise represent the distance from feasi-
bility (please see [1]_ for more information).

Parameters model (cobra.Model) — The model whose feasibility is to be tested.

References

“DFBAlab: A Fast and Reliable MATLAB Code for Dynamic Flux Balance Analysis.” BMC Bioinformatics
15, no. 1 (December 18, 2014): 409. https://doi.org/10.1186/s12859-014-0409-8.

cobra.util.solver.add_lexicographic_constraints (model, objectives, objec-

) o)) tive_direction="max’)
Successively optimize separate targets in a specific order.

For each objective, optimize the model and set the optimal value as a constraint. Proceed in the order of the
objectives given. Due to the specific order this is called lexicographic FBA [1]_. This procedure is useful
for returning unique solutions for a set of important fluxes. Typically this is applied to exchange fluxes.

Parameters

* model (cobra.Model)— The model to be optimized.

234

Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://doi.org/10.1186/s12859-014-0409-8

cobra Documentation, Release 0.18.1

* objectives (1ist)— A list of reactions (or objectives) in the model for which
unique fluxes are to be determined.

* objective_direction (str or list, optional)— The desired objec-
tive direction for each reaction (if a list) or the objective direction to use for all reac-
tions (default maximize).

Returns optimized_fluxes — A vector containing the optimized fluxes for each of the given
reactions in objectives.

Return type pandas.Series

References

“DFBAlab: A Fast and Reliable MATLAB Code for Dynamic Flux Balance Analysis.” BMC Bioinformatics
15, no. 1 (December 18, 2014): 409. https://doi.org/10.1186/s12859-014-0409-8.

cobra.util.util

Module Contents

Classes
AutoVivification Implementation of perl’s autovivification feature.
Checkout
Functions
format_long_string(string, max_length=50)
show_versions() Print dependency information.

cobra.util.util.format_long string (string, max_length=50)

class cobra.util.util.AutoVivification
Bases: dict

Implementation of perl’s autovivification feature. Checkout http://stackoverflow.com/a/652284/280182

__getitem__ (self, item)
X.__getitem__(y) <==>x[y]

cobra.util.util.show_versions ()
Print dependency information.

Package Contents

Classes
HistoryManager Record a list of actions to be taken at a later time.
Used to
AutoVivification Implementation of perl’s autovivification feature.
Checkout

17.1. cobra 235

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://doi.org/10.1186/s12859-014-0409-8
https://docs.python.org/3/library/stdtypes.html#dict
http://stackoverflow.com/a/652284/280182

cobra Documentation, Release 0.18.1

Functions

create stoichiometric matrix(model, ar-
ray_type="dense’, dtype=None)

Return a stoichiometric array representation of the
given model.

nullspace(A, atol=1e-13, rtol=0)

Compute an approximate basis for the nullspace of A.

constraint_matrices(model, ar-
ray_type="dense’, include_vars=False, zero_tol=1e-
06)

Create a matrix representation of the problem.

get_context(obj)

Search for a context manager

resettable(f)

A decorator to simplify the context management of
simple object

get_context(obj)

Search for a context manager

linear reaction_coefficients(model, re-
actions=None)

Coefficient for the reactions in a linear objective.

_valid_atoms(model, expression)

Check whether a sympy expression references the
correct variables.

set_objective(model, value, additive=False)

Set the model objective.

interface_ to_str(interface)

Give a string representation for an optlang interface.

get_solver_name(mip=False, qp=False)

Select a solver for a given optimization problem.

choose_solver(model, solver=None, qp=False)

Choose a solver given a solver name and model.

add_cons_vars_to_problem(model, what,
**kwargs)

Add variables and constraints to a Model’s solver ob-
ject.

remove_cons_vars_from problem(model,
what)

Remove variables and constraints from a Model’s
solver object.

add_absolute_expression(model, expres-
sion, name='abs_var’, ub=None, difference=0,
add=True)

Add the absolute value of an expression to the model.

fix _objective as_constraint(model, frac-
tion=1, bound=None, name="fixed_objective_{}")

Fix current objective as an additional constraint.

check_solver_ status(status,
raise_error=False)

Perform standard checks on a solver’s status.

assert_optimal(model, message="optimization
failed’)

Assert model solver status is optimal.

add_1lp_feasibility(model)

Add a new objective and variables to ensure a feasible
solution.

add_lexicographic_constraints(model,
objectives, objective_direction="max")

Successively optimize separate targets in a specific or-
der.

format_long_string(string, max_length=50)

show_versions()

Print dependency information.

cobra.util.create_stoichiometric_matrix (model, array_type='dense’, dtype=None)
Return a stoichiometric array representation of the given model.

The the columns represent the reactions and rows represent metabolites. S[i,j] therefore contains the quantity
of metabolite i produced (negative for consumed) by reaction j.

Parameters

¢ model (cobra.Model) — The cobra model to construct the matrix for.

* array_type (string) - The type of array to construct. if ‘dense’, return a stan-
dard numpy.array, ‘dok’, or ‘lil’ will construct a sparse array using scipy of the cor-
responding type and ‘DataFrame’ will give a pandas DataFrame with metabolite

indices and reaction columns

* dtype (data-type) — The desired data-type for the array. If not given, defaults to

float.

Returns The stoichiometric matrix for the given model.

236

Chapter 17. API Reference

cobra Documentation, Release 0.18.1

Return type matrix of class drype

cobra.util.nullspace (A, atol=1e-13, rtol=0)
Compute an approximate basis for the nullspace of A. The algorithm used by this function is based on the
singular value decomposition of A.

Parameters

* A(numpy.ndarray)— A should be at most 2-D. A 1-D array with length k will be
treated as a 2-D with shape (1, k)

* atol (float) — The absolute tolerance for a zero singular value. Singular values
smaller than atol are considered to be zero.

e rtol (float) — The relative tolerance. Singular values less than rtol*smax are
considered to be zero, where smax is the largest singular value.

* both atol and rtol are positive, the combined tolerance
is the (If)-

* of the two; that is:: (maximum)-
e = max (atol, rtol * smax) (tol)-

* values smaller than tol are considered to be zero.
(Singular)—

Returns If A is an array with shape (m, k), then ns will be an array with shape (k, n), where
n is the estimated dimension of the nullspace of A. The columns of ns are a basis for the
nullspace; each element in numpy.dot(A, ns) will be approximately zero.

Return type numpy.ndarray

Notes

Taken from the numpy cookbook.

cobra.util.constraint matrices (model, array_type='dense’', include_vars=Fualse,

)) zero_tol=1e-06)
Create a matrix representation of the problem.

This is used for alternative solution approaches that do not use optlang. The function will construct the
equality matrix, inequality matrix and bounds for the complete problem.

Notes
To accomodate non-zero equalities the problem will add the variable “const_one” which is a variable that
equals one.
Parameters
* model (cobra.Model)— The model from which to obtain the LP problem.

* array_type (string) - The type of array to construct. if ‘dense’, return a stan-
dard numpy.array, ‘dok’, or ‘lil’ will construct a sparse array using scipy of the cor-
responding type and ‘DataFrame’ will give a pandas DataFrame with metabolite
indices and reaction columns.

* zero_tol (float)—The zero tolerance used to judge whether two bounds are the
same.

Returns

A named tuple consisting of 6 matrices and 2 vectors: - “equalities” is a matrix S such
that S*vars = b. It includes a row

for each constraint and one column for each variable.

17.1. cobra 237

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float

cobra Documentation, Release 0.18.1

* ”b” the right side of the equality equation such that S*vars = b.

* “inequalities” is a matrix M such that Ib <= M*vars <= ub. It contains a row for each
inequality and as many columns as variables.

* ”bounds” is a compound matrix [lb ub] containing the lower and upper bounds for
the inequality constraints in M.

* “variable_fixed” is a boolean vector indicating whether the variable at that index is
fixed (lower bound == upper_bound) and is thus bounded by an equality constraint.

 ”variable_bounds” is a compound matrix [Ib ub] containing the lower and upper
bounds for all variables.
Return type collections.namedtuple

class cobra.util.HistoryManager
Bases: object

Record a list of actions to be taken at a later time. Used to implement context managers that allow temporary
changes to a Mode 1.

__call__ (self, operation)
Add the corresponding method to the history stack.

Parameters operation (function) — A function to be called at a later time

reset (self)
Trigger executions for all items in the stack in reverse order

cobra.util.get_context (0bj)
Search for a context manager

cobra.util.resettable (f)
A decorator to simplify the context management of simple object attributes. Gets the value of the attribute
prior to setting it, and stores a function to set the value to the old value in the HistoryManager.

cobra.util.OPTLANG_TO_EXCEPTIONS_DICT

exception cobra.util.OptimizationError (message)
Bases: Exception

Common base class for all non-exit exceptions.

exception cobra.util.SolverNotFound
Bases: Exception

A simple Exception when a solver can not be found.

cobra.util.get_context (0bj)
Search for a context manager

cobra.util.solvers
cobra.util.qgp_solvers = ['cplex', 'gurobi']
cobra.util.has_primals

cobra.util.linear reaction_coefficients (model, reactions=None)
Coefficient for the reactions in a linear objective.

Parameters
* model (cobra model) — the model object that defined the objective

* reactions (Iist) — an optional list for the reactions to get the coefficients for.
All reactions if left missing.

Returns A dictionary where the key is the reaction object and the value is the corresponding
coefficient. Empty dictionary if there are no linear terms in the objective.

238 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#list

cobra Documentation, Release 0.18.1

Return type dict

cobra.util._walid_atoms (model, expression)
Check whether a sympy expression references the correct variables.

Parameters
¢ model (cobra.Model) — The model in which to check for variables.
* expression (sympy.Basic)— A sympy expression.
Returns True if all referenced variables are contained in model, False otherwise.
Return type boolean

cobra.util.set_objective (model, value, additive=False)
Set the model objective.

Parameters
* model (cobra model)— The model to set the objective for

* value (model.problem.Objective,) - e.g. opt-
lang.glpk_interface.Objective, sympy.Basic or dict

If the model objective is linear, the value can be a new Objective object or a dictio-
nary with linear coefficients where each key is a reaction and the element the new
coefficient (float).

If the objective is not linear and additive is true, only values of class Objective.

e additive (boolmodel.reactions.Biomass_Ecoli_core.bounds =
(0.1, 0.1))-1Iftrue, add the terms to the current objective, otherwise start with
an empty objective.

cobra.util.interface_to_str (interface)
Give a string representation for an optlang interface.

Parameters interface (string, ModuleType)- Full name of the interface in optlang
or cobra representation. For instance ‘optlang.glpk_interface’ or ‘optlang-glpk’.

Returns The name of the interface as a string
Return type string

cobra.util.get_solver_name (mip=False, gp=False)
Select a solver for a given optimization problem.

Parameters

* mip (bool)— Does the solver require mixed integer linear programming capabili-
ties?

* gp (bool)—Does the solver require quadratic programming capabilities?
Returns The name of feasible solver.
Return type string
Raises SolverNotFound — If no suitable solver could be found.

cobra.util.choose_solver (model, solver=None, gp=False)
Choose a solver given a solver name and model.

This will choose a solver compatible with the model and required capabilities. Also respects model.solver
where it can.

Parameters
* model (a cobra model)— The model for which to choose the solver.

* solver (str, optional)- The name of the solver to be used.

17.1. cobra 239

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

cobra Documentation, Release 0.18.1

* gp (boolean, optional)— Whether the solver needs Quadratic Programming
capabilities.

Returns solver — Returns a valid solver for the problem.
Return type an optlang solver interface
Raises SolverNotFound - If no suitable solver could be found.

cobra.util.add_cons_vars_to_problem (model, what, **kwargs)
Add variables and constraints to a Model’s solver object.

Useful for variables and constraints that can not be expressed with reactions and lower/upper bounds. Will
integrate with the Model’s context manager in order to revert changes upon leaving the context.

Parameters

* model (a cobra model) — The model to which to add the variables and con-
straints.

e what (Ilist or tuple of optlang variables or constraints.)
— The variables or constraints to add to the model. Must be of class
model.problem.Variable or model.problem.Constraint.

* xxkwargs (keyword arguments) — passed to solver.add()

cobra.util.remove_cons_vars_from problem (model, what)
Remove variables and constraints from a Model’s solver object.

Useful to temporarily remove variables and constraints from a Models’s solver object.
Parameters

e model (a cobra model)— The model from which to remove the variables and
constraints.

e what (list or tuple of optlang variables or constraints.)
— The variables or constraints to remove from the model. Must be of class
model.problem.Variable or model.problem.Constraint.

cobra.util.add_absolute_expression (model, expression, name="'abs_var', ub=None, differ-
ence=0, add=True)
Add the absolute value of an expression to the model.

Also defines a variable for the absolute value that can be used in other objectives or constraints.
Parameters
* model (a cobra model) - The model to which to add the absolute expression.

* expression (A sympy expression)— Mustbe a valid expression within the
Model’s solver object. The absolute value is applied automatically on the expression.

* name (string) - The name of the newly created variable.
* ub (positive float)- The upper bound for the variable.

e difference (positive float) - The difference between the expression and
the variable.

* add (bool)— Whether to add the variable to the model at once.

Returns A named tuple with variable and two constraints (upper_constraint, lower_constraint)
describing the new variable and the constraints that assign the absolute value of the ex-
pression to it.

Return type namedtuple

cobra.util.fix_objective_as_constraint (model, fraction=1, bound=None,
name=fixed_objective_{}')
Fix current objective as an additional constraint.

240 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

When adding constraints to a model, such as done in pFBA which minimizes total flux, these constraints can
become too powerful, resulting in solutions that satisfy optimality but sacrifices too much for the original
objective function. To avoid that, we can fix the current objective value as a constraint to ignore solutions
that give a lower (or higher depending on the optimization direction) objective value than the original model.

When done with the model as a context, the modification to the objective will be reverted when exiting that
context.

Parameters
* model (cobra.Model)— The model to operate on
e fraction (float)—The fraction of the optimum the objective is allowed to reach.

* bound (float, None)— The bound to use instead of fraction of maximum opti-
mal value. If not None, fraction is ignored.

* name (st r)—Name of the objective. May contain one {} placeholder which is filled
with the name of the old objective.

Returns
Return type The value of the optimized objective * fraction

cobra.util.check_solver_status (status, raise_error=False)
Perform standard checks on a solver’s status.

cobra.util.assert_optimal (model, message='optimization failed")
Assert model solver status is optimal.

Do nothing if model solver status is optimal, otherwise throw appropriate exception depending on the status.
Parameters
* model (cobra.Model)— The model to check the solver status for.

* message (str (optional))—Message to for the exception if solver status was
not optimal.

cobra.util.add_lp_ feasibility (model)
Add a new objective and variables to ensure a feasible solution.

The optimized objective will be zero for a feasible solution and otherwise represent the distance from feasi-
bility (please see [1]_ for more information).

Parameters model (cobra.Model)— The model whose feasibility is to be tested.

References
“DFBAlab: A Fast and Reliable MATLAB Code for Dynamic Flux Balance Analysis.” BMC Bioinformatics
15, no. 1 (December 18, 2014): 409. https://doi.org/10.1186/s12859-014-0409-8.

cobra.util.add_lexicographic_constraints (model, objectives, objec-

tive_direction="max")
Successively optimize separate targets in a specific order.

For each objective, optimize the model and set the optimal value as a constraint. Proceed in the order of the
objectives given. Due to the specific order this is called lexicographic FBA [1]_. This procedure is useful
for returning unique solutions for a set of important fluxes. Typically this is applied to exchange fluxes.

Parameters
* model (cobra.Model) — The model to be optimized.

* objectives (1ist)— A list of reactions (or objectives) in the model for which
unique fluxes are to be determined.

17.1. cobra 241

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://doi.org/10.1186/s12859-014-0409-8
https://docs.python.org/3/library/stdtypes.html#list

cobra Documentation, Release 0.18.1

* objective_direction (str or list, optional)— The desired objec-
tive direction for each reaction (if a list) or the objective direction to use for all reac-
tions (default maximize).

Returns optimized_fluxes — A vector containing the optimized fluxes for each of the given
reactions in objectives.

Return type pandas.Series

References

“DFBAlab: A Fast and Reliable MATLAB Code for Dynamic Flux Balance Analysis.” BMC Bioinformatics

15, no. 1 (December 18, 2014): 409. https://doi.org/10.1186/s12859-014-0409-8.
cobra.util.format_long_string (string, max_length=50)

class cobra.util.AutoVivification
Bases: dict

Implementation of perl’s autovivification feature. Checkout http://stackoverflow.com/a/652284/280182

__getitem__ (self, item)
X.__getitem__(y) <==> x[y]

cobra.util.show_versions ()
Print dependency information.

17.1.2 Submodules

cobra.exceptions

Module Contents

exception cobra.exceptions.OptimizationError (message)
Bases: Exception

Common base class for all non-exit exceptions.

exception cobra.exceptions.Infeasible (message)
Bases: cobra.exceptions.OptimizationError

Common base class for all non-exit exceptions.

exception cobra.exceptions.Unbounded (message)
Bases: cobra.exceptions.OptimizationError

Common base class for all non-exit exceptions.

exception cobra.exceptions.FeasibleButNotOptimal (message)
Bases: cobra.exceptions.OptimizationError

Common base class for all non-exit exceptions.

exception cobra.exceptions.UndefinedSolution (message)
Bases: cobra.exceptions.OptimizationError

Common base class for all non-exit exceptions.

exception cobra.exceptions.SolverNotFound
Bases: Exception

A simple Exception when a solver can not be found.

cobra.exceptions.OPTLANG_TO_EXCEPTIONS_DICT

242 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://doi.org/10.1186/s12859-014-0409-8
https://docs.python.org/3/library/stdtypes.html#dict
http://stackoverflow.com/a/652284/280182
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

cobra Documentation, Release 0.18.1

17.1.3 Package Contents

Classes
Configuration Define the configuration to be singleton based.
DictList A combined dict and list
Gene A Gene in a cobra model
Metabolite Metabolite is a class for holding information regard-
ing
Model Class representation for a cobra model
Object Defines common behavior of object in cobra.core
Reaction Reaction is a class for holding information regarding

Solution

A unified interface to a cobra.Model optimization so-
lution.

Species

Species is a class for holding information regarding

Functions

_warn_format(message, filename,

lineno, file=None, line=None)

category,

show_versions()

Print dependency information.

cobra._cobra_path
cobra._warning base = %s:%s [1;31m%$s[Om: %s
cobra

cobra.formatwarning

class cobra.Configuration
Bases: six.with_metaclass ()

Define the configuration to be singleton based.

class cobra.DictList (*args)
Bases: 1ist

A combined dict and list

._warn_format (message, category, filename, lineno, file=None, line=None)

This object behaves like a list, but has the O(1) speed benefits of a dict when looking up elements by their

id.
has_id (self, id)
_check (self, id)

make sure duplicate id’s are not added. This function is called before adding in elements.

_generate_index (self)
rebuild the _dict index

get_by_ id (self, id)
return the element with a matching id

list_attr (self, attribute)

return a list of the given attribute for every object

get_by any (self, iterable)

Get a list of members using several different ways of indexing

Parameters iterable

(list (if not,

turned into single element

1ist)) — list where each element is either int (referring to an index in in this

17.1. cobra

243

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

cobra Documentation, Release 0.18.1

DictList), string (a id of a member in this DictList) or member of this DictList for
pass-through

Returns a list of members
Return type list

query (self, search_function, attribute=None)
Query the list

Parameters

* search_function (a string, regular expression or
function) — Used to find the matching elements in the list. - a regular
expression (possibly compiled), in which case the given attribute of the object
should match the regular expression. - a function which takes one argument and
returns True for desired values

* attribute (string or None) - the name attribute of the object to passed
as argument to the search_function. If this is None, the object itself is used.

Returns a new list of objects which match the query

Return type DictList

Examples

>>> import cobra.test

>>> model = cobra.test.create_test_model ('textbook'")
>>> model.reactions.query (lambda x: x.boundary)

>>> import re

>>> regex = re.compile('”g', flags=re.IGNORECASE)
>>> model .metabolites.query (regex, attribute='name')

_replace_on_id (self, new_object)
Replace an object by another with the same id.

append (self, object)
append object to end

union (self, iterable)
adds elements with id’s not already in the model

extend (self, iterable)
extend list by appending elements from the iterable

_extend_nocheck (self, iterable)
extends without checking for uniqueness

This function should only be used internally by DictList when it can guarantee elements are already
unique (as in when coming from self or other DictList). It will be faster because it skips these checks.

__sub___ (self, other)
X.__sub_ (y)<==>Xx-y
Parameters other (iterable) — other must contain only unique id’s present in the
list
__isub__ (self, other)
X.__sub_ (y)<==>x-=y
Parameters other (iterable) — other must contain only unique id’s present in the
list

__add___ (self, other)
X.__add__ (y)<==>x+y

244 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None

cobra Documentation, Release 0.18.1

Parameters other (iterable) — other must contain only unique id’s which do not
intersect with self

__iadd__ (self, other)
X.__dadd__(y) <==>x+=Yy

Parameters other (iterable) — other must contain only unique id’s whcih do not
intersect with self

__reduce__ (self)
Helper for pickle.

__getstate__ (self)
gets internal state

This is only provided for backwards compatibility so older versions of cobrapy can load pickles
generated with cobrapy. In reality, the “_dict” state is ignored when loading a pickle

__setstate___ (self, state)
sets internal state

Ignore the passed in state and recalculate it. This is only for compatibility with older pickles which
did not correctly specify the initialization class

index (self, id, *args)
Determine the position in the list

id: A string or a Object

__contains___ (self, object)
DictList.__contains__(object) <==> object in DictList

object: str or Object
__copy___(self)

insert (self, index, object)
insert object before index

pop (self, *args)
remove and return item at index (default last).

add (self, x)
Opposite of remove. Mirrors set.add

remove (self, x)

Warning: Internal use only

reverse (self)
reverse IN PLACE

sort (self, cmp=None, key=None, reverse=False)
stable sort IN PLACE

cmp(x, y) ->-1,0, 1

__getitem__ (self, i)
x.__getitem__(y) <==> x[y]

__setitem__ (self,i,y)
Set selflkey] to value.

__delitem__ (self, index)
Delete self[key].

__getslice__ (self,i,j)

17.1. cobra 245

cobra Documentation, Release 0.18.1

__setslice__ (self,i,j,y)
__delslice__ (self, i,])
__getattr__ (self, attr)

__dir__ (self)
Default dir() implementation.

class cobra.Gene (id=None, name=", functional=True)
Bases: cobra.core. species.Species

A Gene in a cobra model
Parameters
* id (string)— The identifier to associate the gene with
* name (string)— A longer human readable name for the gene

e functional (bool) — Indicates whether the gene is functional. If it is not func-
tional then it cannot be used in an enzyme complex nor can its products be used.

property functional (self)
A flag indicating if the gene is functional.

Changing the flag is reverted upon exit if executed within the model as context.

knock_out (self)
Knockout gene by marking it as non-functional and setting all associated reactions bounds to zero.

The change is reverted upon exit if executed within the model as context.

remove_from_model (self, model=None, make_dependent_reactions_nonfunctional=True)
Removes the association

Parameters
* model (cobra model)— The model to remove the gene from

* make_dependent_reactions_nonfunctional (bool) — If True then
replace the gene with ‘False’ in the gene association, else replace the gene with
‘True’

Deprecated since version 0.4: Use cobra.manipulation.delete_model_genes to simulate knockouts
and cobra.manipulation.remove_genes to remove genes from the model.

_repr_html_ (self)

class cobra.Metabolite (id=None, formula=None, name=", charge=None, compartment=None)
Bases: cobra.core.species.Species

Metabolite is a class for holding information regarding a metabolite in a cobra.Reaction object.
Parameters

e id (st r) - the identifier to associate with the metabolite

e formula (str)— Chemical formula (e.g. H20)

¢ name (str)— A human readable name.

* charge (f1oat) — The charge number of the metabolite

* compartment (str or None)- Compartment of the metabolite.
_set_id_with_model (self, value)

property constraint (self)
Get the constraints associated with this metabolite from the solve

Returns the optlang constraint for this metabolite

Return type optlang.<interface>.Constraint

246 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

cobra Documentation, Release 0.18.1

property elements (self)
Dictionary of elements as keys and their count in the metabolite as integer. When set, the formula
property is update accordingly

property formula_weight (self)
Calculate the formula weight

property vy (self)
The shadow price for the metabolite in the most recent solution

Shadow prices are computed from the dual values of the bounds in the solution.

property shadow_price (self)
The shadow price in the most recent solution.

Shadow price is the dual value of the corresponding constraint in the model.

Warning:
* Accessing shadow prices through a Solution object is the safer, preferred, and only guaran-

teed to be correct way. You can see how to do so easily in the examples.

» Shadow price is retrieved from the currently defined self._model.solver. The solver status is
checked but there are no guarantees that the current solver state is the one you are looking
for.

* If you modify the underlying model after an optimization, you will retrieve the old opti-
mization values.

Raises

e RuntimeError — If the underlying model was never optimized beforehand or
the metabolite is not part of a model.

* OptimizationError — If the solver status is anything other than ‘optimal’.

Examples

>>> import cobra

>>> import cobra.test

>>> model = cobra.test.create_test_model ("textbook™)
>>> solution = model.optimize ()

>>> model .metabolites.glc__D_e.shadow_price
-0.09166474637510488

>>> solution.shadow_prices.glc__D_e
-0.091664746375104883

remove_from_model (self, destructive=False)
Removes the association from self.model

The change is reverted upon exit when using the model as a context.

Parameters destructive (bool) — If False then the metabolite is removed from
all associated reactions. If True then all associated reactions are removed from the
Model.

summary (self, solution=None, threshold=0.01, fva=None, names=False,

float_format="{:.3g}'" format)
Create a summary of the producing and consuming fluxes.

This method requires the model for which this metabolite is a part to be solved.

Parameters

17.1. cobra 247

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

* solution (cobra.Solution, optional)— A previous model solution
to use for generating the summary. If None, the summary method will resolve
the model. Note that the solution object must match the model, i.e., changes to
the model such as changed bounds, added or removed reactions are not taken into
account by this method (default None).

e threshold (float, optional) — Threshold below which fluxes are not
reported. May not be smaller than the model tolerance (default 0.01).

* fva (pandas.DataFrame or float, optional)— Whether or not to
include flux variability analysis in the output. If given, fva should either be a
previous FVA solution matching the model or a float between 0 and 1 representing
the fraction of the optimum objective to be searched (default None).

* names (bool, optional)- Emitreaction and metabolite names rather than
identifiers (default False).

e float_format (callable, optional)-Format string for floats (default
'{:3G}'.format).

Returns
Return type cobra.MetaboliteSummary
See also:
Reaction.summary (), Model.summary ()
_repr_html_ (self)

class cobra.Model (id_or_model=None, name=None)
Bases: cobra.core.object.Object

Class representation for a cobra model
Parameters

* id_or_model (Model, string) — Either an existing Model object in which
case a new model object is instantiated with the same properties as the original model,
or an identifier to associate with the model as a string.

* name (string)- Human readable name for the model

reactions
A DictList where the key is the reaction identifier and the value a Reaction

Type DictList

metabolites
A DictList where the key is the metabolite identifier and the value a Metabolite

Type DictList

genes
A DictList where the key is the gene identifier and the value a Gene

Type DictList

groups
A DictList where the key is the group identifier and the value a Group

Type DictList

solution
The last obtained solution from optimizing the model.

Type Solution

__setstate__ (self, state)
Make sure all cobra.Objects in the model point to the model.

248 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

__getstate__ (self)
Get state for serialization.

Ensures that the context stack is cleared prior to serialization, since partial functions cannot be pickled
reliably.

property solver (self)
Get or set the attached solver instance.

The associated the solver object, which manages the interaction with the associated solver, e.g. glpk.

This property is useful for accessing the optimization problem directly and to define additional non-
metabolic constraints.

Examples

>>> import cobra.test

>>> model = cobra.test.create_test_model ("textbook™)

>>> new = model.problem.Constraint (model.objective.expression,
>>> 1b=0.99)

>>> model.solver.add (new)

property tolerance (self)
property description (self)

get_metabolite_compartments (self)
Return all metabolites’ compartments.

property compartments (self)
property medium (self)

__add___(self, other_model)
Add the content of another model to this model (+).

The model is copied as a new object, with a new model identifier, and copies of all the reactions in
the other model are added to this model. The objective is the sum of the objective expressions for the
two models.

__iadd__ (self, other_model)
Incrementally add the content of another model to this model (+=).

Copies of all the reactions in the other model are added to this model. The objective is the sum of the
objective expressions for the two models.

copy (self)
Provides a partial ‘deepcopy’ of the Model. All of the Metabolite, Gene, and Reaction objects are
created anew but in a faster fashion than deepcopy

add_metabolites (self, metabolite_list)
Will add a list of metabolites to the model object and add new constraints accordingly.

The change is reverted upon exit when using the model as a context.
Parameters metabolite_list (A list of cobra.core.Metabolite objects) —

remove_metabolites (self, metabolite_list, destructive=False)
Remove a list of metabolites from the the object.

The change is reverted upon exit when using the model as a context.
Parameters

* metabolite_list (list) — A list with cobra.Metabolite objects as ele-
ments.

17.1. cobra 249

https://docs.python.org/3/library/stdtypes.html#list

cobra Documentation, Release 0.18.1

¢ destructive (bool) — If False then the metabolite is removed from all as-
sociated reactions. If True then all associated reactions are removed from the
Model.

add_reaction (self, reaction)
Will add a cobra.Reaction object to the model, if reaction.id is not in self.reactions.

Parameters
e reaction (cobra.Reaction) - The reaction to add

e (0.6) Use ~cobra.Model.add reactions instead
(Deprecated) —

add_boundary (self, metabolite, type='exchange', reaction_id=None, lb=None, ub=None,

sbo_term=None)
Add a boundary reaction for a given metabolite.

There are three different types of pre-defined boundary reactions: exchange, demand, and sink reac-
tions. An exchange reaction is a reversible, unbalanced reaction that adds to or removes an extracellu-
lar metabolite from the extracellular compartment. A demand reaction is an irreversible reaction that
consumes an intracellular metabolite. A sink is similar to an exchange but specifically for intracellular
metabolites.

If you set the reaction type to something else, you must specify the desired identifier of the created
reaction along with its upper and lower bound. The name will be given by the metabolite name and
the given type.

Parameters

* metabolite (cobra.Metabolite)— Any given metabolite. The compart-
ment is not checked but you are encouraged to stick to the definition of exchanges
and sinks.

* type (str, {"exchange", "demand", "sink"})— Using one of the
pre-defined reaction types is easiest. If you want to create your own kind of
boundary reaction choose any other string, e.g., ‘my-boundary’.

e reaction_id (str, optional) - The ID of the resulting reaction. This
takes precedence over the auto-generated identifiers but beware that it might make
boundary reactions harder to identify afterwards when using model.boundary or
specifically model.exchanges etc.

* 1b(float, optional)-The lower bound of the resulting reaction.
e ub (float, optional)- The upper bound of the resulting reaction.

* sbo_term (str, optional)— A correct SBO term is set for the available
types. If a custom type is chosen, a suitable SBO term should also be set.

Returns The created boundary reaction.

Return type cobra.Reaction

Examples

>>> import cobra.test

>>> model = cobra.test.create_test_model ("textbook™)

>>> demand = model.add_boundary (model.metabolites.atp_c, type="demand")
>>> demand.id

'DM_atp_c'

>>> demand.name

'ATP demand'

>>> demand.bounds

(0, 1000.0)

(continues on next page)

250 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

cobra Documentation, Release 0.18.1

(continued from previous page)

>>> demand.build_reaction_string()
'atp_c ——> '

add_reactions (self, reaction_list)
Add reactions to the model.

Reactions with identifiers identical to a reaction already in the model are ignored.
The change is reverted upon exit when using the model as a context.
Parameters reaction_list (Iist)— A list of cobra.Reaction objects

remove_reactions (self, reactions, remove_orphans=~False)
Remove reactions from the model.

The change is reverted upon exit when using the model as a context.
Parameters

e reactions (Iist) — A list with reactions (cobra.Reaction), or their id’s, to
remove

* remove_orphans (bool)-Remove orphaned genes and metabolites from the
model as well

add_groups (self, group_list)
Add groups to the model.

Groups with identifiers identical to a group already in the model are ignored.

If any group contains members that are not in the model, these members are added to the model as
well. Only metabolites, reactions, and genes can have groups.

Parameters group_list (11ist)— A list of cobra.Group objects to add to the model.

remove_groups (self, group_list)
Remove groups from the model.

Members of each group are not removed from the model (i.e. metabolites, reactions, and genes in the
group stay in the model after any groups containing them are removed).

Parameters group_list (1ist) — A list of cobra.Group objects to remove from the
model.

get_associated_groups (self, element)
Returns a list of groups that an element (reaction, metabolite, gene) is associated with.

Parameters element (cobra.Reaction, cobra.Metabolite, or cobra.Gene) —
Returns All groups that the provided object is a member of
Return type list of cobra.Group

add_cons_vars (self, what, **kwargs)
Add constraints and variables to the model’s mathematical problem.

Useful for variables and constraints that can not be expressed with reactions and simple lower and
upper bounds.

Additions are reversed upon exit if the model itself is used as context.
Parameters

* what (1list or tuple of optlang variables or
constraints.)— The variables or constraints to add to the model. Must be of
class optlang.interface.Variable or optlang.interface. Constraint.

* xxkwargs (keyword arguments)— Passed to solver.add()

17.1. cobra 251

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

cobra Documentation, Release 0.18.1

remove_cons_vars (self, what)
Remove variables and constraints from the model’s mathematical problem.

Remove variables and constraints that were added directly to the model’s underlying mathematical
problem. Removals are reversed upon exit if the model itself is used as context.

Parameters what (list or tuple of optlang variables or
constraints.) — The variables or constraints to add to the model. Must be
of class optlang.interface.Variable or optlang.interface.Constraint.

property problem (self)
The interface to the model’s underlying mathematical problem.

Solutions to cobra models are obtained by formulating a mathematical problem and solving it. Co-
brapy uses the optlang package to accomplish that and with this property you can get access to the
problem interface directly.

Returns The problem interface that defines methods for interacting with the problem and
associated solver directly.

Return type optlang.interface

property variables (self)
The mathematical variables in the cobra model.

In a cobra model, most variables are reactions. However, for specific use cases, it may also be useful
to have other types of variables. This property defines all variables currently associated with the
model’s problem.

Returns A container with all associated variables.
Return type optlang.container.Container

property constraints (self)
The constraints in the cobra model.

In a cobra model, most constraints are metabolites and their stoichiometries. However, for specific
use cases, it may also be useful to have other types of constraints. This property defines all constraints
currently associated with the model’s problem.

Returns A container with all associated constraints.
Return type optlang.container.Container

property boundary (self)
Boundary reactions in the model. Reactions that either have no substrate or product.

property exchanges (self)
Exchange reactions in model. Reactions that exchange mass with the exterior. Uses annotations and
heuristics to exclude non-exchanges such as sink reactions.

property demands (self)
Demand reactions in model. Irreversible reactions that accumulate or consume a metabolite in the
inside of the model.

property sinks (self)
Sink reactions in model. Reversible reactions that accumulate or consume a metabolite in the inside
of the model.

_populate_solver (self, reaction_list, metabolite_list=None)
Populate attached solver with constraints and variables that model the provided reactions.

slim optimize (self, error_value=float('nan'), message=None)
Optimize model without creating a solution object.

Creating a full solution object implies fetching shadow prices and flux values for all reactions and
metabolites from the solver object. This necessarily takes some time and in cases where only one
or two values are of interest, it is recommended to instead use this function which does not create a
solution object returning only the value of the objective. Note however that the optimize() function

252 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#list

cobra Documentation, Release 0.18.1

uses efficient means to fetch values so if you need fluxes/shadow prices for more than say 4 reac-
tions/metabolites, then the total speed increase of slim_optimize versus optimize is expected to be
small or even negative depending on how you fetch the values after optimization.

Parameters

* error_value (float, None)— The value to return if optimization failed
due to e.g. infeasibility. If None, raise OptimizationError if the optimization
fails.

* message (string) — Error message to use if the model optimization did not
succeed.

Returns The objective value.
Return type float

optimize (self, objective_sense=None, raise_error=False)
Optimize the model using flux balance analysis.

Parameters

* objective_sense ({None, 'maximize' 'minimize'},
optional) — Whether fluxes should be maximized or minimized. In
case of None, the previous direction is used.

* raise_error (bool)—

If true, raise an OptimizationError if solver status is not optimal.

Notes

Only the most commonly used parameters are presented here. Additional parameters for cobra.solvers
may be available and specified with the appropriate keyword argument.

repair (self, rebuild_index=True, rebuild_relationships=True)
Update all indexes and pointers in a model

Parameters

e rebuild_index (bool) — rebuild the indices kept in reactions, metabolites
and genes

* rebuild_relationships (bool) — reset all associations between genes,
metabolites, model and then re-add them.

property objective (self)
Get or set the solver objective

Before introduction of the optlang based problems, this function returned the objective reactions as a
list. With optlang, the objective is not limited a simple linear summation of individual reaction fluxes,
making that return value ambiguous. Henceforth, use cobra.util.solver.linear_reaction_coefficients to
get a dictionary of reactions with their linear coefficients (empty if there are none)

The set value can be dictionary (reactions as keys, linear coefficients as values), string (reaction iden-
tifier), int (reaction index), Reaction or problem.Objective or sympy expression directly interpreted
as objectives.

When using a HistoryManager context, this attribute can be set temporarily, reversed when the exiting
the context.

property objective_direction (self)
Get or set the objective direction.

When using a HistoryManager context, this attribute can be set temporarily, reversed when exiting
the context.

17.1. cobra 253

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

summary (self,

solution=None, threshold=0.01, fva=None, names=False,

float_format="{:.3g}" format)
Create a summary of the exchange fluxes of the model.

Parameters

Returns

solution (cobra.Solution, optional)— A previous model solution
to use for generating the summary. If None, the summary method will resolve
the model. Note that the solution object must match the model, i.e., changes to
the model such as changed bounds, added or removed reactions are not taken into
account by this method (default None).

threshold (float, optional) — Threshold below which fluxes are not
reported. May not be smaller than the model tolerance (default 0.01).

fva (pandas.DataFrame or float, optional)— Whether or not to
include flux variability analysis in the output. If given, fva should either be a
previous FVA solution matching the model or a float between 0 and 1 representing
the fraction of the optimum objective to be searched (default None).

names (bool, optional)— Emitreaction and metabolite names rather than
identifiers (default False).

float_format (callable, optional)- Format string for floats (default
'{:3G}'.format).

Return type cobra.ModelSummary

See also:

Reaction.summary (), Metabolite.summary ()

__enter__ (self)

Record all future changes to the model, undoing them when a call to __exit__ is received

__exit__ (self, type, value, traceback)
Pop the top context manager and trigger the undo functions

merge (self, right, prefix_existing=None, inplace=True, objective="left')
Merge two models to create a model with the reactions from both models.

Custom constraints and variables from right models are also copied to left model, however note that,

constraints and variables are assumed to be the same if they have the same name.

right [cobra.Model] The model to add reactions from

prefix_existing [string] Prefix the reaction identifier in the right that already exist in the left model

with this

inplace [bool] Add reactions from right directly to left model object. Otherwise, create a new model
leaving the left model untouched. When done within the model as context, changes to the

string.

models are reverted upon exit.

objective [string] One of ‘left’, ‘right’ or ‘sum’ for setting the objective of the resulting model to that

of the corresponding model or the sum of both.

_repr_html_ (self)

class cobra.Object (id=None, name="")

Bases: object

Defines common behavior of object in cobra.core

property id (self)

_set_id_with_model (self, value)

property annotation (self)

254

Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

cobra Documentation, Release 0.18.1

__getstate__ (self)
To prevent excessive replication during deepcopy.

__repr__ (self)
Return repr(self).
__str__ (self)

Return str(self).

class cobra.Reaction (id=None, name=", subsystem="", lower_bound=0.0, upper_bound=None)
Bases: cobra.core.object.Object

Reaction is a class for holding information regarding a biochemical reaction in a cobra.Model object.

Reactions are by default irreversible with bounds (0.0, cobra.Configuration().upper_bound) if no bounds
are provided on creation. To create an irreversible reaction use lower_bound=None, resulting in reaction
bounds of (cobra.Configuration().lower_bound, cobra.Configuration().upper_bound).

Parameters

e id (string)— The identifier to associate with this reaction
* name (string)— A human readable name for the reaction
* subsystem (string)— Subsystem where the reaction is meant to occur
¢ lower_bound (f1oat) - The lower flux bound
* upper_bound (f1oat) — The upper flux bound

__radd_

_set_id with_model (self, value)

property reverse_id (self)
Generate the id of reverse_variable from the reaction’s id.

property flux expression (self)
Forward flux expression

Returns The expression representing the the forward flux (if associated with model), oth-
erwise None. Representing the net flux if model.reversible_encoding == ‘unsplit’ or
None if reaction is not associated with a model

Return type sympy expression

property forward variable (self)
An optlang variable representing the forward flux

Returns An optlang variable for the forward flux or None if reaction is not associated
with a model.

Return type optlang.interface.Variable

property reverse_variable (self)
An optlang variable representing the reverse flux

Returns An optlang variable for the reverse flux or None if reaction is not associated with
a model.

Return type optlang.interface.Variable

property objective_coefficient (self)
Get the coefficient for this reaction in a linear objective (float)

Assuming that the objective of the associated model is summation of fluxes from a set of reactions,
the coefficient for each reaction can be obtained individually using this property. A more general way
is to use the model.objective property directly.

__copy___(self)

___deepcopy___(self, memo)

17.1. cobra 255

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

cobra Documentation, Release 0.18.1

static _check bounds (/b, ub)
update_variable_bounds (self)

property lower_bound (self)

Get or set the lower bound

Setting the lower bound (float) will also adjust the associated optlang variables associated with the
reaction. Infeasible combinations, such as a lower bound higher than the current upper bound will
update the other bound.

When using a HistoryManager context, this attribute can be set temporarily, reversed when the exiting
the context.

property upper_bound (self)

Get or set the upper bound

Setting the upper bound (float) will also adjust the associated optlang variables associated with the
reaction. Infeasible combinations, such as a upper bound lower than the current lower bound will
update the other bound.

When using a HistoryManager context, this attribute can be set temporarily, reversed when the exiting
the context.

property bounds (self)

Get or set the bounds directly from a tuple

Convenience method for setting upper and lower bounds in one line using a tuple of lower and upper
bound. Invalid bounds will raise an AssertionError.

When using a HistoryManager context, this attribute can be set temporarily, reversed when the exiting
the context.

property flux (self)

The flux value in the most recent solution.

Flux is the primal value of the corresponding variable in the model.

Warning:
*» Accessing reaction fluxes through a Solution object is the safer, preferred, and only guaran-

teed to be correct way. You can see how to do so easily in the examples.

* Reaction flux is retrieved from the currently defined self._model.solver. The solver status is
checked but there are no guarantees that the current solver state is the one you are looking
for.

* If you modify the underlying model after an optimization, you will retrieve the old opti-
mization values.

Raises

* RuntimeError — If the underlying model was never optimized beforehand or
the reaction is not part of a model.

* OptimizationError — If the solver status is anything other than ‘optimal’.

e AssertionError — If the flux value is not within the bounds.

256

Chapter 17. API Reference

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#AssertionError

cobra Documentation, Release 0.18.1

Examples

>>> import cobra.test

>>> model = cobra.test.create_test_model ("textbook™)
>>> solution = model.optimize ()

>>> model.reactions.PFK.flux

7.477381962160283

>>> solution.fluxes.PFK

7.4773819621602833

property reduced_cost (self)
The reduced cost in the most recent solution.

Reduced cost is the dual value of the corresponding variable in the model.

Warning:
* Accessing reduced costs through a Solution object is the safer, preferred, and only guaran-

teed to be correct way. You can see how to do so easily in the examples.

* Reduced cost is retrieved from the currently defined self._model.solver. The solver status is
checked but there are no guarantees that the current solver state is the one you are looking
for.

* If you modify the underlying model after an optimization, you will retrieve the old opti-
mization values.

Raises

* RuntimeError — If the underlying model was never optimized beforehand or
the reaction is not part of a model.

* OptimizationError — If the solver status is anything other than ‘optimal’.

Examples

>>> import cobra.test

>>> model = cobra.test.create_test_model ("textbook™)
>>> solution = model.optimize ()

>>> model.reactions.PFK.reduced_cost
-8.673617379884035e-18

>>> solution.reduced_costs.PFK
-8.6736173798840355e~-18

property metabolites (self)
property genes (self)
property gene_reaction_rule (self)

property gene_name_reaction_rule (self)
Display gene_reaction_rule with names intead.

Do NOT use this string for computation. It is intended to give a representation of the rule using more
familiar gene names instead of the often cryptic ids.

property functional (self)
All required enzymes for reaction are functional.

Returns True if the gene-protein-reaction (GPR) rule is fulfilled for this reaction, or if
reaction is not associated to a model, otherwise False.

Return type bool

17.1. cobra 257

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

property x (self)
The flux through the reaction in the most recent solution.

Flux values are computed from the primal values of the variables in the solution.

property vy (self)
The reduced cost of the reaction in the most recent solution.

Reduced costs are computed from the dual values of the variables in the solution.

property reversibility (self)
Whether the reaction can proceed in both directions (reversible)

This is computed from the current upper and lower bounds.

property boundary (self)
Whether or not this reaction is an exchange reaction.

Returns True if the reaction has either no products or reactants.

property model (self)
returns the model the reaction is a part of

_update_awareness (self)
Make sure all metabolites and genes that are associated with this reaction are aware of it.

remove_from_model (self, remove_orphans=False)
Removes the reaction from a model.

This removes all associations between a reaction the associated model, metabolites and genes.
The change is reverted upon exit when using the model as a context.

Parameters remove_orphans (bool) — Remove orphaned genes and metabolites
from the model as well

delete (self, remove_orphans=False)
Removes the reaction from a model.

This removes all associations between a reaction the associated model, metabolites and genes.
The change is reverted upon exit when using the model as a context.
Deprecated, use reaction.remove_from_model instead.

Parameters remove_orphans (bool) — Remove orphaned genes and metabolites
from the model as well

__setstate__ (self, state)
Probably not necessary to set _model as the cobra.Model that contains self sets the _model attribute
for all metabolites and genes in the reaction.

However, to increase performance speed we do want to let the metabolite and gene know that they are
employed in this reaction

copy (self)
Copy a reaction

The referenced metabolites and genes are also copied.

__add___ (self, other)
Add two reactions

The stoichiometry will be the combined stoichiometry of the two reactions, and the gene reaction rule
will be both rules combined by an and. All other attributes (i.e. reaction bounds) will match those of
the first reaction

__iadd___ (self, other)
__sub___ (self, other)

__isub__ (self, other)

258 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

__imul__ (self, coefficient)
Scale coefficients in a reaction by a given value

E.g. A -> B becomes 2A -> 2B.
If coefficient is less than zero, the reaction is reversed and the bounds are swapped.
__mul___ (self, coefficient)

property reactants (self)
Return a list of reactants for the reaction.

property products (self)
Return a list of products for the reaction

get_coefficient (self, metabolite_id)
Return the stoichiometric coefficient of a metabolite.

Parameters metabolite_id (str or cobra.Metabolite)-

get_coefficients (self, metabolite_ids)
Return the stoichiometric coefficients for a list of metabolites.

[N

Parameters metabolite_ids (iterable) - Containing str or co-
bra.Metabolite™"s.

add_metabolites (self, metabolites_to_add, combine=True, reversibly=True)
Add metabolites and stoichiometric coefficients to the reaction. If the final coefficient for a metabolite
is 0 then it is removed from the reaction.

The change is reverted upon exit when using the model as a context.
Parameters

* metabolites_to_add (dict) — Dictionary with metabolite objects or
metabolite identifiers as keys and coefficients as values. If keys are strings (name
of a metabolite) the reaction must already be part of a model and a metabolite
with the given name must exist in the model.

* combine (bool) — Describes behavior a metabolite already exists in the reac-
tion. True causes the coefficients to be added. False causes the coefficient to be
replaced.

* reversibly (bool) — Whether to add the change to the context to make the
change reversibly or not (primarily intended for internal use).

subtract_metabolites (self, metabolites, combine=True, reversibly=True)
Subtract metabolites from a reaction.

That means add the metabolites with -1*coefficient. If the final coefficient for a metabolite is O then
the metabolite is removed from the reaction.

Notes

* A final coefficient < 0 implies a reactant.

* The change is reverted upon exit when using the model as a context.

Parameters

* metabolites (dict)— Dictionary where the keys are of class Metabolite and
the values are the coefficients. These metabolites will be added to the reaction.

* combine (bool) — Describes behavior a metabolite already exists in the reac-
tion. True causes the coefficients to be added. False causes the coefficient to be
replaced.

17.1. cobra 259

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

* reversibly (bool) — Whether to add the change to the context to make the
change reversibly or not (primarily intended for internal use).

property reaction (self)
Human readable reaction string

build_reaction_string (self, use_metabolite_names=False)
Generate a human readable reaction string

check_mass_balance (self)
Compute mass and charge balance for the reaction

returns a dict of {element: amount} for unbalanced elements. “charge” is treated as an element in this
dict This should be empty for balanced reactions.

property compartments (self)
lists compartments the metabolites are in

get_compartments (self)
lists compartments the metabolites are in

_associate_gene (self, cobra_gene)
Associates a cobra.Gene object with a cobra.Reaction.

Parameters cobra_gene (cobra.core.Gene.Gene) —

_dissociate_gene (self, cobra_gene)
Dissociates a cobra.Gene object with a cobra.Reaction.

Parameters cobra_gene (cobra.core.Gene.Gene) —

knock_out (self)
Knockout reaction by setting its bounds to zero.

build_reaction_from_string (self, reaction_str, verbose=True, fwd_arrow=None,

rev_arrow=None, reversible_arrow=None, term_split="+")
Builds reaction from reaction equation reaction_str using parser

Takes a string and using the specifications supplied in the optional arguments infers a set of metabo-
lites, metabolite compartments and stoichiometries for the reaction. It also infers the reversibility of
the reaction from the reaction arrow.

Changes to the associated model are reverted upon exit when using the model as a context.
Parameters
* reaction_str (string) — a string containing a reaction formula (equation)
* verbose (bool) - setting verbosity of function
e fwd_arrow (re.compile) — for forward irreversible reaction arrows
e rev_arrow (re.compile)— for backward irreversible reaction arrows
* reversible_arrow (re.compile) — for reversible reaction arrows
* term_split (string) - dividing individual metabolite entries

summary (self, solution=None, threshold=0.01, fva=None, names=False,

float_format="{:.3g}" format)
Create a summary of the producing and consuming fluxes of the reaction.

Parameters

* solution (cobra.Solution, optional)— A previous model solution
to use for generating the summary. If None, the summary method will resolve
the model. Note that the solution object must match the model, i.e., changes to
the model such as changed bounds, added or removed reactions are not taken into
account by this method (default None).

260 Chapter 17. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

cobra Documentation, Release 0.18.1

e threshold (float, optional) — Threshold below which fluxes are not
reported. May not be smaller than the model tolerance (default 0.01).

* fva (pandas.DataFrame or float, optional)— Whether or not to
include flux variability analysis in the output. If given, fva should either be a
previous FVA solution matching the model or a float between 0 and 1 representing
the fraction of the optimum objective to be searched (default None).

e names (bool, optional)- Emitreaction and metabolite names rather than
identifiers (default False).

e float_format (callable, optional)-Format string for floats (default
'{:3G}'.format).

Returns
Return type cobra.ReactionSummary
See also:
Metabolite.summary (), Model.summary ()

__str__ (self)
Return str(self).

_repr_html_ (self)

class cobra.Solution (objective_value, status, fluxes, reduced_costs=None,

shadow_prices=None, **kwargs)
Bases: object

A unified interface to a cobra.Model optimization solution.

Notes
Solution is meant to be constructed by get_solution please look at that function to fully understand the
Solution class.

objective_value
The (optimal) value for the objective function.

Type float
status
The solver status related to the solution.
Type str
fluxes

Contains the reaction fluxes (primal values of variables).
Type pandas.Series

reduced_costs
Contains reaction reduced costs (dual values of variables).

Type pandas.Series

shadow_prices
Contains metabolite shadow prices (dual values of constraints).

Type pandas.Series
get_primal by id

__repr__ (self)
String representation of the solution instance.

_repr_html_ (self)

17.1. cobra 261

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

cobra Documentation, Release 0.18.1

__getitem__ (self, reaction_id)
Return the flux of a reaction.

Parameters reaction (st r)— A model reaction ID.

to_frame (self)
Return the fluxes and reduced costs as a data frame

class cobra.Species (id=None, name=None)
Bases: cobra.core.object.Object

Species is a class for holding information regarding a chemical Species
Parameters
e id (string)— An identifier for the chemical species
* name (string)— A human readable name.
property reactions (self)

__getstate__ (self)
Remove the references to container reactions when serializing to avoid problems associated with
recursion.

copy (self)
When copying a reaction, it is necessary to deepcopy the components so the list references aren’t

carried over.

Additionally, a copy of a reaction is no longer in a cobra.Model.

This should be fixed with self.__deepcopy__ if possible
property model (self)

cobra.show_versions ()
Print dependency information.

cobra._ version_ = 0.18.1
17.2 test_room
Test functionalities of ROOM.

17.2.1 Module Contents

Functions
test_room_sanity(model, all_solvers) Test optimization criterion and optimality for ROOM.
test_linear room_sanity(model, Test optimization criterion and optimality for linear
all_solvers) ROOM.

test_room.test_room_sanity (model, all_solvers)
Test optimization criterion and optimality for ROOM.

test_room.test_linear_room_sanity (model, all_solvers)
Test optimization criterion and optimality for linear ROOM.

262 Chapter 17. API Reference

https://docs.python.org/3/library/stdtypes.html#str

cobra Documentation, Release 0.18.1

17.3 test_geometric

Test functionalities of Geometric FBA.

17.3.1 Module Contents

Functions

geometric_fba model()

Generate geometric FBA model as described in'

test_geometric_fba_benchmark(model,
benchmark, all_solvers)

Benchmark geometric_fba.

test_geometric_fba(geometric_fba_model,
all_solvers)

Test geometric_fba.

test_geometric.geometric_fba_model ()
Generate geometric FBA model as described in'

References

test_geometric.test_geometric_fba_ benchmark (model, benchmark, all_solvers)

Benchmark geometric_fba.

test_geometric.test_geometric_fba (geometric_fba_model, all_solvers)

Test geometric_fba.

17.4 test_parsimonious

Test functionalities of pFBA.

17.4.1 Module Contents

Functions

test_pfba_benchmark(large_model,
mark, all_solvers)

bench-

Benchmark pFBA functionality.

test_pfba(model, all_solvers)

Test pFBA functionality.

test_parsimonious.test_pfba_benchmark (large_model, benchmark, all_solvers)

Benchmark pFBA functionality.

test_parsimonious.test_pfba (model, all_solvers)

Test pFBA functionality.

! Smallbone, Kieran & Simeonidis, Vangelis. (2009). Flux balance analysis: A geometric perspective. Journal of theoretical biology.258.

311-5. 10.1016/j.jtbi.2009.01.027.

17.4. test_parsimonious

263

cobra Documentation, Release 0.18.1

17.5 test_reaction

Test _assess functions in reaction.py

17.5.1 Module Contents

Functions

test_assess(model, all_solvers) Test assess functions.

test_reaction.test_assess (model, all_solvers)
Test assess functions.

17.6 test_gapfilling

Test functionalities of gapfilling.

17.6.1 Module Contents

Functions

test_gapfilling(salmonella) Test Gapfilling.

test_gapfilling.test_gapfilling (salmonella)
Test Gapfilling.

17.7 test_variability

Test functionalities of Flux Variability Analysis.

17.7.1 Module Contents

Functions

test_flux variability benchmark(large_mobBehchmark FVA.
benchmark, all_solvers)

test_pfba_flux_variability(model, Test FVA using pFBA.
pfba_fva_results, fva_results, all_solvers)

test_loopless_pfba_ fva(model)

test_flux variability(model, fva_results, Test FVA.

all_solvers)

test_parallel_flux variability(model, Test parallel FVA.
fva_results, all_solvers)
test_flux_variability_loopless_benchmdBenghotak loopless FVA.
benchmark, all_solvers)

test_flux _variability loopless(model, Testloopless FVA.
all_solvers)

Continued on next page

264 Chapter 17. API Reference

cobra Documentation, Release 0.18.1

Table 102 — continued from previous page

test_fva_data_frame(model) Test DataFrame obtained from FVA.
test_fva_infeasible(model) Test FVA infeasibility.
test_fva_minimization(model) Test minimization using FVA.

test_find _blocked_reactions_solver_norkganfidd)blocked_reactions() [no specific solver].
test_essential_genes(model) Test find_essential_genes().
test_essential_reactions(model) Test find_blocked_reactions().

test_find blocked reactions(model, Test find_blocked_reactions().

all_solvers)

test_variability.test_flux_variability_benchmark (large_model, benchmark,

all_solvers)
Benchmark FVA.

test_variability.test_pfba_flux_variability (model, pfba_fva_results, fva_results,

all_solvers)
Test FVA using pFBA.

test_variability.test_loopless_pfba_fva (model)

test_variability.test_flux_variability (model, fva_results, all_solvers)
Test FVA.

test_variability.test_parallel flux variability (model, fva_results, all_solvers)
Test parallel FVA.

test_variability.test_f£flux_variability_ loopless_benchmark (model, benchmark,

all_solvers)
Benchmark loopless FVA.

test_variability.test_flux_variability loopless (model, all_solvers)
Test loopless FVA.

test_variability.test_fva_data_frame (model)
Test DataFrame obtained from FVA.

test_variability.test_fva_ infeasible (model)
Test FVA infeasibility.

test_variability.test_fva_minimization (model)
Test minimization using FVA.

test_variability.test_find blocked_reactions_solver_none (model)
Test find_blocked_reactions() [no specific solver].

test_variability.test_essential_genes (model)
Test find_essential_genes().

test_variability.test_essential_reactions (model)
Test find_blocked_reactions().

test_variability.test_find_blocked_reactions (model, all_solvers)
Test find_blocked_reactions().

17.7. test_variability 265

cobra Documentation, Release 0.18.1

17.8 test_fastcc

Test functionalities of FASTCC.

17.8.1 Module Contents

Functions
figurel_model() Generate a toy model as described in' figure 1.
opposing _model() Generate a toy model with opposing reversible reac-

tions.
test_fastcc_benchmark(model, benchmark, Benchmark fastcc.
all_solvers)

test_figurel(figurel_model, all_solvers) Test fastcc.

test_opposing(opposing_model, all_solvers) Test fastcc.
test_rfastcc_against_fva_nonblocked rxrildgnaded -blocked reactions obtained by FASTCC
all_solvers) against FVA.

test_fastcc.figurel _model ()
Generate a toy model as described in' figure 1.

References
test_fastcc.opposing_model ()
Generate a toy model with opposing reversible reactions.
This toy model ensures that two opposing reversible reactions do not appear as blocked.

test_fastcc.test fastcec benchmark (model, benchmark, all_solvers)
Benchmark fastcc.

test_fastcc.test_figurel (figurel_model, all_solvers)
Test fastcc.

test_fastcc.test_opposing (opposing_model, all_solvers)
Test fastcc.

test_fastcc.test_fastcc_against_fva_nonblocked_rxns (model, all_solvers)
Test non-blocked reactions obtained by FASTCC against FVA.

17.9 test_moma

Test functionalities of MOMA.

! Vlassis N, Pacheco MP, Sauter T (2014) Fast Reconstruction of Compact Context-Specific Metabolic Network Models. PLoS Comput
Biol 10(1): €1003424. doi:10.1371/journal.pcbi.1003424

266 Chapter 17. API Reference

cobra Documentation, Release 0.18.1

17.9.1 Module Contents

Functions
test_moma_sanity(model, gp_solvers) Test optimization criterion and optimality for
MOMA.
test_linear_moma_sanity(model, Test optimization criterion and optimality for linear
all_solvers) MOMA.

test_moma.test_moma_sanity (model, gp_solvers)
Test optimization criterion and optimality for MOMA.

test_moma.test_linear_moma_sanity (model, all_solvers)
Test optimization criterion and optimality for linear MOMA.

17.10 conftest

Define module level fixtures.

17.10.1 Module Contents

Functions

achr(model) Return ACHRSampler instance for tests.

conftest .achr (model)
Return ACHRSampler instance for tests.

17.11 test_loopless

Test functionalities of loopless.py

17.11.1 Module Contents

Functions
construct_11_test_model() Construct test model.
11_test_model(request) Return test model set with different solvers.

test_loopless_benchmark_before(benchmarkBenchmark initial condition.
test_loopless_benchmark_after(benchmark)Benchmark final condition.

test_loopless_solution(ll_test_model) Test loopless_solution().
test_loopless_solution_fluxes(model) Test fluxes of loopless_solution()
test_add_loopless(ll_test_model) Test add_loopless().

test_loopless.construct_11_test_model ()
Construct test model.

test_loopless.ll_test_model (request)
Return test model set with different solvers.

17.11. test_loopless 267

cobra Documentation, Release 0.18.1

test_loopless.test_loopless_benchmark_before (benchmark)
Benchmark initial condition.

test_loopless.test_loopless_benchmark_after (benchmark)
Benchmark final condition.

test_loopless.test_loopless_solution (/l_test_model)
Test loopless_solution().

test_loopless.test_loopless_solution_fluxes (model)
Test fluxes of loopless_solution()

test_loopless.test_add_loopless (ll_test_model)
Test add_loopless().

17.12 test _deletion

Test functionalities of reaction and gene deletions.

17.12.1 Module Contents

Functions

test_single_gene_deletion_fba_benchma Bdnohdedrk single gene deletion using FBA.
benchmark, all_solvers)

test_single gene_deletion_fba(model, Test single gene deletion using FBA.

all_solvers)

test_single gene_deletion moma_benchmBenghothak single gene deletion using MOMA.
benchmark, qp_solvers)

test_single_gene_deletion_moma(model, Test single gene deletion using MOMA.

gp_solvers)

test_single_gene_deletion_moma_refererkes(uindtd,gene deletion using MOMA (reference so-
gp_solvers) lution).

test_single gene_deletion_linear moma_ Benchiarkshfgledslne deletion using linear MOMA.
benchmark, all_solvers)

test_single _gene_deletion_linear_ moma(fexdelingle gene deletion using linear MOMA (refer-
all_solvers) ence solution).
test_single_gene_deletion_room_ benchmdBdughothak single gene deletion using ROOM.
benchmark, all_solvers)

test_single_gene_deletion_linear room Benchimark-snfgledsne deletion using linear ROOM.
benchmark, all_solvers)

test_single_reaction_deletion_benchma Bdnobdedrk single reaction deletion.

benchmark, all_solvers)

test_single reaction deletion(model, Test single reaction deletion.

all_solvers)

test_single_reaction_deletion_room(roonlastslagle reaction deletion using ROOM.
room_solution, all_solvers)

test_single reaction _deletion_ linear rlestgiogierenodel deletion using linear ROOM.
room_solution, all_solvers)

test_double_gene_deletion_benchmark(larggemehdedrk double gene deletion.

benchmark)

test_double gene_ deletion(model) Test double gene deletion.
test_double_reaction_deletion_benchma Bdtamlgmankodelible reaction deletion.

benchmark)

test_double reaction_deletion(model) Test double reaction deletion.

268 Chapter 17. API Reference

cobra Documentation, Release 0.18.1

test_deletion.test_single_gene_deletion_fba_benchmark (model, benchmark,

all_solvers)
Benchmark single gene deletion using FBA.

test_deletion.test_single_gene_deletion_fba (model, all_solvers)
Test single gene deletion using FBA.

test_deletion.test_single_gene_deletion_moma_benchmark (model, benchmark,

gp_solvers)
Benchmark single gene deletion using MOMA.

test_deletion.test_single_gene_deletion_moma (model, gp_solvers)
Test single gene deletion using MOMA.

test_deletion.test_single_gene_deletion_moma_reference (model, gp_solvers)
Test single gene deletion using MOMA (reference solution).

test_deletion.test_single_gene_deletion_linear_moma_benchmark (model,
benchmark,

all_solvers)
Benchmark single gene deletion using linear MOMA.

test_deletion.test_single_gene_deletion_linear_moma (model, all_solvers)
Test single gene deletion using linear MOMA (reference solution).

test_deletion.test_single_gene_deletion_room benchmark (model, benchmark,

all_solvers)
Benchmark single gene deletion using ROOM.

test_deletion.test_single_gene_deletion_linear_room_benchmark (model,
benchmark,

all_solvers)
Benchmark single gene deletion using linear ROOM.

test_deletion.test_single_reaction_deletion_benchmark (model, benchmark,

all_solvers)
Benchmark single reaction deletion.

test_deletion.test_single_reaction_deletion (model, all_solvers)
Test single reaction deletion.

test_deletion.test_single_reaction_deletion_room (room_model, room_solution,

all_solvers)
Test single reaction deletion using ROOM.

test_deletion.test_single_reaction_deletion_linear_ room (room_model,
room_solution,

all_solvers)
Test single reaction deletion using linear ROOM.

test_deletion.test_double_gene_deletion_benchmark (large_model, benchmark)
Benchmark double gene deletion.

test_deletion.test_double_gene_deletion (model)
Test double gene deletion.

test_deletion.test_double_reaction_deletion_benchmark (large_model, bench-

mark)
Benchmark double reaction deletion.

test_deletion.test_double_reaction_deletion (model)
Test double reaction deletion.

17.12. test_deletion 269

cobra Documentation, Release 0.18.1

17.13 test_phenotype phase_ plane

Test functionalities of Phenotype Phase Plane Analysis.

17.13.1 Module Contents

Functions
test_envelope_one(model) Test flux of production envelope.
test_envelope_multi_reaction_objectivelasopebduction of multiple objectives.
test_multi_variable_envelope(model, Test production of envelope (multiple variable).
variables, num)
test_envelope_ two(model) Test production of envelope.

test_phenotype_phase_plane.test_envelope_one (model)
Test flux of production envelope.

test_phenotype_phase_plane.test_envelope_multi_reaction_objective (model)
Test production of multiple objectives.

test_phenotype_phase_plane.test_multi_variable_ envelope (model, variables,

num)
Test production of envelope (multiple variable).

test_phenotype_phase_plane.test_envelope_two (model)
Test production of envelope.

17.14 update_pickles

17.14.1 Module Contents

update_pickles.config
update_pickles.solver = glpk
update_pickles.ecoli_model
update_pickles.salmonella
update_pickles.gene_names
update_pickles.name
update_pickles.media_compositions
update_pickles.textbook
update_pickles.mini
update_pickles.compartments
update_pickles.upper_bound
update_pickles.objective = ['PFK', 'ATPM']
update_pickles.r
update_pickles.gene_reaction_rule
update_pickles.upper_bound

update_pickles.lower_bound

270 Chapter 17. API Reference

cobra Documentation, Release 0.18.1

update_pickles.tg
update_pickles.raven
update_pickles. fva_result
update_pickles.clean_result
update_pickles. fva_result
update_pickles.clean_result

update_pickles.solution

17.15 test util

Test functions of util.py

17.15.1 Module Contents

Functions

test_show_versions(capsys)

test_util.test_show_versions (capsys)

17.16 test_array

Test functions of array.py

17.16.1 Module Contents

Functions

test_dense_mat rix(model)

test_sparse_matrix(model)

test_array.scipy
test_array.test_dense_matrix (model)

test_array.test_sparse_matrix (model)

17.16. test_array

271

cobra Documentation, Release 0.18.1

1717 test_solver

Test functions of solver.py

17.17.1 Module Contents

Functions

test_solver 11ist()

test_interface_str()

test_solver_name()

test_choose solver(model)

test_linear reaction_coefficients(model)

test_fail_non_linear reaction_coefficients(model,

solver)

test_add_remove(model)

test_add remove in_context(model)

test_absolute_expression(model)

test_fix_objective_as_ constraint(solver,

model)

test_fix objective_as constraint_minimize(model,

solver)

test_add _1lp feasibility(model, solver)

test_add lexicographic constraints(model,

solver)

test_time 1imit(large_model)

test_solver.
test_solver.
test_solver.
test_solver.
test_solver.

test_solver.

test_solver

test_solver.
test_solver.
test_solver.

test_solver.

test_solver

test_solver.
test_solver.
test_solver.

test_solver.

stable_optlang = ['glpk', 'cplex', 'gurobi']
optlang_solvers

test_solver list ()

test_interface_str()

test_solver_name ()

test_choose_solver (model)

.test_linear reaction_coefficients (model)

test_fail non_linear_reaction_ coefficients (model, solver)
test add_remove (model)
test_add_remove_ in_context (model)

test_absolute_expression (model)

.test_fix objective_as_constraint (solver, model)

test_fix_objective_as_constraint_minimize (model, solver)
test_add_1lp_feasibility (model, solver)
test_add_lexicographic_constraints (model, solver)

test_time_ limit (large_model)

272

Chapter 17. API Reference

cobra Documentation, Release 0.18.1

17.18 test_optgp

Test functionalities of OptGPSampler.

17.18.1 Module Contents

Functions

optgp(model)

Return OptGPSampler instance for tests.

test_optgp_init_benchmark(model, bench-
mark)

Benchmark inital OptGP sampling.

test_optgp_sample benchmark(optgp,
benchmark)

Benchmark OptGP sampling.

test_sampling(optgp)

Test sampling.

test_batch_sampling(optgp)

Test batch sampling.

test_variables_samples(achr, optgp)

Test variable samples.

test_reproject(optgp)

Test reprojection of sampling.

test_optgp.optgp (model)
Return OptGPSampler instance for tests.

test_optgp.test_optgp_init_benchmark (model, benchmark)

Benchmark inital OptGP sampling.

test_optgp.test_optgp_sample_benchmark (optgp, benchmark)

Benchmark OptGP sampling.

test_optgp.test_sampling (oprgp)
Test sampling.

test_optgp.test_batch_sampling (opigp)
Test batch sampling.

test_optgp.test_variables_samples (achr, optgp)

Test variable samples.

test_optgp.test_reproject (opigp)
Test reprojection of sampling.

17.19 test_achr

Test functionalities of ACHRSampler.

17.19.1 Module Contents

Functions

test_achr init_benchmark(model, bench-

mark)

Benchmark inital ACHR sampling.

test_achr _sample benchmark(achr, bench-
mark)

Benchmark ACHR sampling.

test_validate wrong_sample(achr, model)

Test sample correctness.

test_sampling(achr)

Test sampling.

test_batch_sampling(achr)

Test batch sampling.

Continued on next page

17.19. test_achr

273

cobra Documentation, Release 0.18.1

Table 113 — continued from previous page
test_variables_samples(achr) Test variable samples.

test_achr.test_achr init benchmark (model, benchmark)
Benchmark inital ACHR sampling.

test_achr.test_achr_sample_benchmark (achr, benchmark)
Benchmark ACHR sampling.

test_achr.test_validate_wrong_sample (achr, model)
Test sample correctness.

test_achr.test_sampling (achr)
Test sampling.

test_achr.test_batch_sampling (achr)
Test batch sampling.

test_achr.test_variables_samples (achr)
Test variable samples.

17.20 test_sampling

Test functionalities of flux sampling methods.

17.20.1 Module Contents

Functions
test_single achr(model) Test ACHR sampling (one sample).
test_single optgp(model) Test OptGP sampling (one sample).
test_multi_optgp(model) Test OptGP sampling (multi sample).
test_wrong_method(model) Test method intake sanity.
test_fixed_ seed(model) Test result of fixed seed for sampling.
test_equality constraint(model) Test equality constraint.
test_inequality constraint(model) Test inequality constraint.
test_inhomogeneous_sanity(model) Test whether inhomogeneous sampling gives approx-

imately the same

test_complicated _model() Test a complicated model.
test_single_point_space(model) Test the reduction of the sampling space to one point.

test_sampling.test_single_achr (model)
Test ACHR sampling (one sample).

test_sampling.test_single_optgp (model)
Test OptGP sampling (one sample).

test_sampling.test_multi_optgp (model)
Test OptGP sampling (multi sample).

test_sampling.test_wrong_method (model)
Test method intake sanity.

test_sampling.test_fixed_ seed (model)
Test result of fixed seed for sampling.

test_sampling.test_equality_constraint (model)
Test equality constraint.

274 Chapter 17. API Reference

cobra Documentation, Release 0.18.1

test_sampling.test_inequality_constraint (model)
Test inequality constraint.

test_sampling.test_inhomogeneous_sanity (model)
Test whether inhomogeneous sampling gives approximately the same standard deviation as a homogeneous
version.

test_sampling.test_complicated_model ()
Test a complicated model.

Difficult model since the online mean calculation is numerically unstable so many samples weakly violate
the equality constraints.

test_sampling.test_single_point_space (model)
Test the reduction of the sampling space to one point.

17.20. test_sampling 275

cobra Documentation, Release 0.18.1

276 Chapter 17. API Reference

CHAPTER
EIGHTEEN

INDICES AND TABLES

* genindex
¢ modindex

¢ search

277

cobra Documentation, Release 0.18.1

278 Chapter 18. Indices and tables

C

cobra,
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.

cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.

cobra.
cobra.
cobra.
cobra.

cobra.i
cobra.i
cobra.i

cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.

75

core, 75
core.configur
core.dictlist
core.
core.gene, 84
core.group, 85
core.metaboli
core.model, 89

ation, 80
, 80

formula, 83

te, 86

core.object, 95

core.reaction
singleto
solution
species,

core.
core.
core.
core.
core.
75
Ccore.summary.

CcCore.summary.

, 96
n, 103
, 103
105

summary, 75
summary.metabolite_summary,

model_summary, 76
summary, 77

exceptions, 242

flux_analysis
flux_analysis

flux_analysis.

flux_analysis
flux_analysis
flux_analysis
flux_analysis
flux_analysis
flux_analysis
flux_analysis
142
flux_analysis
flux_analysis
flux_analysis
io, 162

.dict, 162

. json, 164
.mat, 165
io.sbml, 166
io.yaml, 173
manipulation,
manipulation.
manipulation.
manipulation.
manipulation.

, 129
.deletion, 129
fastcc, 133
.gapfilling, 134
.geometric, 137
.helpers, 137
.loopless, 138
.moma, 139
.parsimonious, 141

cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.

cobra.

cobra.

cobra.

cobra.

cobra.

cobra.
cobra.

cobra.
cobra.

cobra.

.phenotype_phase_plane,

.reaction, 144
.room, 146
.variability, 148

180
annotate, 180
delete, 180
modify, 182
validate, 183

cobra.

cobra.
cobra.
cobra.

cobra.

cobra.
cobra.
cobra.
cobra.
cobra.
cobra.
cobra.

PYTHON MODULE INDEX

medium, 185
medium.annotations, 185

medium.boundary_types, 185
medium.minimal_ medium, 186
sampling, 189

sampling.
sampling.
sampling.
sampling.
test,

test
test
test
test
210
test
211
test
213
test
test
test
215
test
test
219
test
test
206

test.

208
test
209
test
test
test
220
test
220
test
test
test
test
test
test

test.

206

.test_core.

test_core.

.test_io,
.test_io.
.test_io.

.test_io.

.test_io.
.test_io.
.test_io.
.test_io.
.test_io.
.test_io.
test_io.

achr, 189
hr_sampler, 192
optgp, 195
sampling, 198

.conftest, 225

.test_core, 206
.test_core.conftest, 210
.test_core.test_configuration
.test_core.test_core_reaction
.test_core.test_dictlist,
.test_core.test_gene, 214
.test_core.test_group, 215

.test_core.test_metabolite,

.test_core.test_model, 216
.test_core.test_solution,

.test_core.test_summary, 206
test_summary.test_metabolite

.test_core.test_summary.test_reaction_s

219
conftest, 219
test_annotation,

test_annotation_format,

test_io_order, 220
test_Jjson, 221
test_mat, 222
test_notes, 222
test_pickle, 222
test_sbml, 223
test_yaml, 224

279

test_summary.test_model_summ

cobra Documentation, Release 0.18.1

cobra.test.test_manipulation, 226
cobra.test.test_medium, 226
cobra.util, 228

cobra.util.array, 228
cobra.util.context, 230
cobra.util.solver, 231
cobra.util.util, 235

conftest, 267

t

test_achr, 273
test_array, 271
test_deletion, 268
test_fastcc, 266
test_gapfilling, 264
test_geometric, 263
test_loopless, 267
test_moma, 266
test_optgp, 273
test_parsimonious, 263
test_phenotype_phase_plane, 270
test_reaction, 264
test_room, 262
test_sampling, 274
test_solver, 272
test_util, 271
test_variability, 264

u
update_pickles, 270

280 Python Module Index

Symbols

_GeneEscaper (class in
bra.manipulation.modify), 182
_GeneRemover (class in cobra.manipulation.delete),
181
_OPTIONAL_GENE_ATTRIBUTES (in module co-
bra.io.dict), 163
_OPTIONAL_METABOLITE_ATTRIBUTES (in mod-
ule cobra.io.dict), 163
_OPTIONAL_MODEL_ATTRIBUTES (in module co-
bra.io.dict), 163
_OPTIONAL_REACTION_ATTRIBUTES (in module
cobra.io.dict), 162
_ORDERED_OPTIONAL_GENE_KEYS (in module co-
bra.io.dict), 163
_ORDERED_OPTIONAL_METABOLITE_KEYS
module cobra.io.dict), 163
_ORDERED_OPTIONAL_MODEL_KEYS (in module
cobra.io.dict), 163
_ORDERED_OPTIONAL_REACTION_KEYS (in mod-
ule cobra.io.dict), 162
_REQUIRED_GENE_ATTRIBUTES (in module co-
bra.io.dict), 163
_REQUIRED_METABOLITE_ATTRIBUTES (in mod-
ule cobra.io.dict), 162
_REQUIRED_REACTION_ATTRIBUTES (in module
cobra.io.dict), 162
__add__ () (cobra.DictList method), 244
(cobra.Model method), 249
(cobra.Reaction method), 258
(cobra.core.DictList method), 108
(cobra.core.Model method), 112
(cobra.core.Reaction method), 122
(cobra.core.dictlist. DictList method), 82
(cobra.core.formula.Formula method),

co-

(in

add__ ()
add__ ()
add__ ()
add___ ()
add__ ()
add__ ()
add__ ()

o0

3

__add__ () (cobra.core.model.Model method), 90

__add__ () (cobra.core.reaction.Reaction method),
100

__build_problem () (cobra.sampling. HRSampler
method), 200

__build_problem()
bra.sampling.hr_sampler. HRSampler
method), 194

_call__ ()
method), 103

(co-

(cobra.core.singleton.Singleton

INDEX

_call__ ()
238
__call_ () (cobra.util.context.HistoryManager
method), 230
__contains__ () (cobra.DictList method), 245
__contains__ () (cobra.core.DictList method), 108
__contains__ () (cobra.core.dictlist. DictList
method), 82
__copy___() (cobra.DictList method), 245
__copy___ () (cobra.Reaction method), 255
__copy__ () (cobra.core.DictList method), 108
__copy___ () (cobra.core.Reaction method), 119
__copy__ () (cobra.core.dictlist.DictList method),
82
__copy___() (cobra.core.reaction.Reaction method),
97
__ deepcopy__ () (cobra.Reaction method), 255
__deepcopy__ () (cobra.core.Reaction method),
119
__deepcopy__ ()
method), 97
_ delitem__ () (cobra.DictList method), 245
__delitem__ () (cobra.core.DictList method), 109
__delitem__ () (cobra.core.dictlist. DictList
method), 83
__delslice__ () (cobra.DictList method), 246
_ _delslice__ () (cobra.core.DictList method), 109
__delslice__ () (cobra.core.dictlist. DictList
method), 83
_dir__ () (cobra.DictList method), 246
_ dir__ () (cobra.core.DictList method), 109
_ dir__ () (cobra.core.dictlist.DictList method), 83
__enter__ () (cobra.Model method), 254
__enter__ () (cobra.core.Model method), 117
__enter__ () (cobra.core.model.Model method), 95
__exit__ () (cobra.Model method), 254
__exit__ () (cobra.core.Model method), 117
__exit__ () (cobra.core.model. Model method), 95
__getattr__ () (cobra.DictList method), 246
__getattr__ () (cobra.core.DictList method), 109
__getattr__ () (cobra.core.dictlist. DictList
method), 83
__getitem__ () (cobra.DictList method), 245
__getitem__ () (cobra.Solution method), 261
__getitem__ () (cobra.core.DictList method), 109
__getitem__ () (cobra.core.LegacySolution

(cobra.util. HistoryManager method),

(cobra.core.reaction.Reaction

281

cobra Documentation, Release 0.18.1

__getitem__ ()
__getitem__ ()
__getitem__ ()
__getslice_

__getslice__ ()
__getslice_ ()

__getstate__ ()
__getstate__ ()

__getstate__ ()

method), 126

__getitem__ () (cobra.core.Solution method), 126

__getitem__ () (cobra.core.dictlist. DictList
method), 83

__getitem__ () (co-

bra.core.solution.LegacySolution — method),

105

(cobra.core.solution.Solution

method), 104

(cobra.util. AutoVivification

method), 242

(cobra.util.util. AutoVivification

method), 235

) (cobra.DictList method), 245

(cobra.core.DictList method), 109
(cobra.core.dictlist. DictList

method), 83
__getstate__ () (cobra.DictList method), 245
__getstate__ () (cobra.Model method), 248
__getstate__ () (cobra.Object method), 254
__getstate__ () (cobra.Species method), 262
__getstate__ () (cobra.core.DictList method), 108
__getstate__ () (cobra.core.Model method), 112
__getstate__ () (cobra.core.Object method), 118
__getstate__ () (cobra.core.Species method), 127
__getstate_ () (cobra.core.dictlist. DictList

method), 82

(cobra.core.model.Model
method), 89

(cobra.core.object.Object
method), 95

(cobra.core.species.Species
method), 106

__getstate__ () (cobra.sampling.OptGPSampler

method), 205

__getstate__ () (co-
bra.sampling.optgp.OptGPSampler method),
197
__iadd__ () (cobra.DictList method), 245
__iadd__ () (cobra.Model method), 249
__iadd__ () (cobra.Reaction method), 258
__diadd__ () (cobra.core.DictList method), 108
_ _iadd__ () (cobra.core.Model method), 113
__iadd__ () (cobra.core.Reaction method), 122
__iadd__ () (cobra.core.dictlist.DictList method),
2
_ _iadd__ () (cobra.core.model.Model method), 90
_ iadd__ () (cobra.core.reaction.Reaction method),
100
__imul__ () (cobra.Reaction method), 259
__imul__ () (cobra.core.Reaction method), 122
__imul__ () (cobra.core.reaction.Reaction method),
00
__isub__ () (cobra.DictList method), 244
__isub__ () (cobra.Reaction method), 258
__isub__ () (cobra.core.DictList method), 108
__isub__ () (cobra.core.Reaction method), 122
__disub__ () (cobra.core.dictlist.DictList method),

_ radd_
___radd
__radd___
_ reduce_

_ reduce_
__reduce__ ()

__setitem__ ()

__setstate_ ()

_ _setstate_ ()

__setstate_ ()

82

__isub__ () (cobra.core.reaction.Reaction method),

100
le) (cobra.core.Group method), 125
) (cobra.core.group.Group method), 86
__ () (cobra.Reaction method), 259
__ () (cobra.core.Reaction method), 122
) (cobra.core.reaction.Reaction method),
100
(cobra.Reaction attribute), 255
__ (cobra.core.Reaction attribute), 118
(cobra.core.reaction.Reaction attribute),
96
) (cobra.DictList method), 245
) (cobra.core.DictList method), 108
(cobra.core.dictlist. DictList

method), 82
__repr___ () (cobra.Object method), 255
__repr__ () (cobra.Solution method), 261
__repr__ () (cobra.core.LegacySolution method),
126
__repr__ () (cobra.core.Object method), 118
__repr__ () (cobra.core.Solution method), 126
__repr__ () (cobra.core.object.Object method), 96
__repr__ () (cobra.core.solution.LegacySolution

method), 105

__repr__ () (cobra.core.solution.Solution method),
104

__setitem__ () (cobra.DictList method), 245

_ setitem__ () (cobra.core.DictList method), 109

(cobra.core.dictlist. DictList

method), 83
_ setslice__ () (cobra.DictList method), 245
__setslice_) (cobra.core.DictList method), 109
__setslice__ () (cobra.core.dictlist. DictList
method), 83
__setstate__ () (cobra.DictList method), 245
_ _setstate__ () (cobra.Model method), 248
_ _setstate__ () (cobra.Reaction method), 258
__setstate__ () (cobra.core.DictList method), 108
__setstate__ () (cobra.core.Model method), 112
__setstate__ () (cobra.core.Reaction method),
122

(cobra.core.dictlist. DictList
method), 82

(cobra.core.model.Model
method), 89

(cobra.core.reaction.Reaction
method), 100

_ _single_iteration() (co-
bra.sampling ACHRSampler method),
203

__single_iteration() (co-
bra.sampling.achrACHRSampler — method),

191

__str__ () (cobra.Object method), 255
__str__ () (cobra.Reaction method), 261
__str__ () (cobra.core.Object method), 118

282

Index

cobra Documentation, Release 0.18.1

__str__ () (cobra.core.Reaction method), 124 _dissociate_gene () (co-
__str___ () (cobra.core.Summary method), 129 bra.core.reaction.Reaction method), 101
__str__ () (cobra.core.object.Object method), 96 _element_lists () (in module co-
__str__ () (cobra.core.reaction.Reaction method), bra.flux_analysis.deletion), 130
102 _entities_ids () (in module co-
__str__ () (cobra.core.summary.Summary method), bra.flux_analysis.deletion), 130
79 _error_string () (in module cobra.io.sbml), 173
__str__ () (cobra.core.summary.summary.Summary _escape_non_alphanum() (in module co-
method), 78 bra.io.sbml), 168
_ sub__ () (cobra.DictList method), 244 _escape_str_id() (in module co-
sub__ () (cobra.Reaction method), 258 bra.manipulation.modify), 182
__sub__ () (cobra.core.DictList method), 108 _extend_nocheck () (cobra.DictList method), 244
__sub__ () (cobra.core.Reaction method), 122 _extend_nocheck () (cobra.core.DictList
__sub__ () (cobra.core.dictlist. DictList method), 81 method), 108
_ _sub__ () (cobra.core.reaction.Reaction method), _extend_nocheck () (cobra.core.dictlist.DictList
100 method), 81
_ _version__ (in module cobra), 262 _f_gene () (in module cobra.io.sbml), 168
_add_cycle_free() (in module co- _f_gene_rev () (in module cobra.io.sbml), 168
bra.flux_analysis.loopless), 138 _f_group () (in module cobra.io.sbml), 169
_as_medium() (in module co- _f_group_rev () (in module cobra.io.sbml), 169
bra.medium.minimal_medium), 187 _f_reaction () (in module cobra.io.sbml), 169
_associate_gene () (cobra.Reaction method), _f_reaction_rev () (in module cobra.io.sbml),
260 169
_associate_gene () (cobra.core.Reaction _f_specie () (in module cobra.io.sbml), 168
method), 123 _f_specie_rev () (in module cobra.io.sbml), 168
_associate_gene () (co- _find_sparse_mode () (in module co-
bra.core.reaction.Reaction method), 101 bra.flux_analysis.fastcc), 133
_bounds_dist () (cobra.sampling. HRSampler _fix_type () (in module cobra.io.dict), 163
method), 201 _flip_coefficients () (in module co-
_bounds_dist () (co- bra.flux_analysis.fastcc), 133
bra.sampling.hr_sampler. HRSampler _forward_arrow_finder (in module co-
method), 194 bra.core.reaction), 96
_bracket_re (in module cobra.io.mat), 165 _fva_step () (in module co-
_cell () (in module cobra.io.mat), 165 bra.flux_analysis.variability), 148
_check () (cobra.DictList method), 243 _gene_deletion () (in module co-
_check () (cobra.core.DictList method), 107 bra.flux_analysis.deletion), 129
_check () (cobra.core.dictlist.DictList method), 80 _gene_deletion_worker () (in module co-
_check () (in module cobra.io.mat), 166 bra.flux_analysis.deletion), 130
_check () (in module cobra.io.sbml), 171 _generate () (cobra.core.MetaboliteSummary
_check_bounds () (cobra.Reaction static method), method), 127
256 _generate () (cobra.core.Summary method), 128
_check_bounds () (cobra.core.Reaction static _generate () (co-
method), 119 bra.core.summary.MetaboliteSummary
_check_bounds () (cobra.core.reaction.Reaction method), 79
static method), 97 _generate () (cobra.core.summary.ModelSummary
_check_required () (in module cobra.io.sbml), method), 80
171 _generate () (cobra.core.summary.Summary
_check_sbml_annotations () (in module co- method), 78
bra.test.test_io.test_annotation), 220 _generate () (co-
_clip () (in module cobra.io.sbml), 168 bra.core.summary.metabolite_summary.MetaboliteSummary
_cobra_path (in module cobra), 243 method), 76
_create_bound () (in module cobra.io.sbml), 171 _generate () (co-
_create_parameter () (in module cobra.io.sbml), bra.core.summary.model_summary.ModelSummary
171 method), 76
_dissociate_gene () (cobra.Reaction method), _generate () (co-
260 bra.core.summary.summary.Summary
_dissociate_gene () (cobra.core.Reaction method), 77
method), 123 _generate_index () (cobra.DictList method), 243

Index 283

cobra Documentation, Release 0.18.1

_generate_index () (cobra.core.DictList 182
method), 107 _replace_on_id () (cobra.DictList method), 244
_generate_index () (cobra.core.dictlist.DictList _replace_on_id () (cobra.core.DictList method),
method), 80 107
_get_doc_from_filename () (in module co- _replace_on_id() (cobra.core.dictlist. DictList
bra.io.sbml), 170 method), 81
_get_growth () (in module co- _repr_html_ () (cobra.Gene method), 246
bra.flux_analysis.deletion), 129 _repr_html_ () (cobra.Metabolite method), 248
_get_id_compartment () (in module co- _repr_html_ () (cobra.Model method), 254
bra.io.mat), 165 _repr_html_ () (cobra.Reaction method), 261
_init_worker () (in module co- _repr_html_ () (cobra.Solution method), 261
bra.flux_analysis.deletion), 130 _repr_html_ () (cobra.core.Gene method), 110
_init_worker () (in module co- _repr_html_ () (cobra.core.Metabolite method),
bra.flux_analysis.variability), 148 111
_instances (cobra.core.singleton.Singleton at- _repr_html_ () (cobra.core.Model method), 118
tribute), 103 _repr_html_ () (cobra.core.Reaction method), 124
_is_redundant () (cobra.sampling. HRSampler _repr_html_ () (cobra.core.Solution method), 126
method), 201 _repr_html_ () (cobra.core.Summary method), 129
_is_redundant () (co- _repr_html_ () (cobra.core.gene.Gene method), 85
bra.sampling.hr_sampler. HRSampler _repr_html_ () (cobra.core.metabolite.Metabolite
method), 194 method), 88
_model_to_sbml () (in module cobra.io.sbml), 170 _repr_html_ () (cobra.core.model.Model method),
_multi_deletion () (in module co- 95
bra.flux_analysis.deletion), 130 _repr_html_ () (cobra.core.reaction.Reaction
_number_to_chr () (in module cobra.io.sbml), 168 method), 102
_optimize_or_value() (in module co- _repr_html_ () (cobra.core.solution.Solution
bra.flux_analysis.reaction), 145 method), 104
_parse_annotation_info () (in module co- _repr_html_ () (cobra.core.summary.Summary
bra.io.sbml), 172 method), 79
_parse_annotations () (in module co- _repr_html_ () (co-
bra.io.sbml), 172 bra.core.summary.summary.Summary
_parse_notes_dict () (in module cobra.io.sbml), method), 78
171 _reproject () (cobra.sampling. HRSampler
_populate_solver () (cobra.Model method), 252 method), 200
_populate_solver () (cobra.core.Model _reproject () (co-
method), 116 bra.sampling.hr_sampler. HRSampler
_populate_solver () (cobra.core.model.Model method), 194
method), 93 _reverse_arrow_finder (in module co-
_process_flux_dataframe () (co- bra.core.reaction), 96
bra.core.Summary method), 128 _reversible_arrow_finder (in module co-
_process_flux_dataframe () (co- bra.core.reaction), 96
bra.core.summary.Summary method), _sbase_annotations () (in module co-
79 bra.io.sbml), 172
_process_flux_dataframe () (co- _sbase_notes_dict () (in module cobra.io.sbml),
bra.core.summary.summary.Summary 171
method), 77 _sbml_to_model () (in module cobra.io.sbml), 170
_random_point () (cobra.sampling. HRSampler _set_id_with_model () (cobra.Metabolite
method), 200 method), 246
_random_point () (co- _set_id_with_model () (cobra.Object method),
bra.sampling.hr_sampler. HRSampler 254
method), 194 _set_id_with_model () (cobra.Reaction
_reaction_deletion () (in module co- method), 255
bra.flux_analysis.deletion), 129 _set_id_with_model () (cobra.core.Metabolite
_reaction_deletion_worker () (in module co- method), 110
bra.flux_analysis.deletion), 129 _set_id_with_model () (cobra.core.Object
_reactions_knockouts_with_restore () method), 118
(in module cobra.flux_analysis.deletion), 129 _set_id_with_model () (cobra.core.Reaction
_renames (in module cobra.manipulation.modify), method), 118

284 Index

cobra Documentation, Release 0.18.1

_set_id_with_model () (co-
bra.core.metabolite.Metabolite method),
87

_set_id with _model () (co-
bra.core.object.Object method), 95

_set_id_with_model () (co-

bra.core.reaction.Reaction method), 96
_to_table() (cobra.core.MetaboliteSummary
method), 128
_to_table () (cobra.core.Summary method), 128

add_cons_vars () (cobra.Model method), 251

add_cons_vars_to_problem() (in module co-
bra.util), 240

add_cons_vars_to_problem () (in module co-
bra.util.solver), 233

add_envelope () (in module co-
bra.flux_analysis.phenotype_phase_plane),
143

add_groups () (cobra.core.Model method), 114

add_groups () (cobra.core.model. Model method),
92

add_groups () (cobra.Model method), 251

add_lexicographic_constraints () (in mod-
ule cobra.util), 241

add_lexicographic_constraints () (in mod-
ule cobra.util.solver), 234

add_linear_ob7j () (in module
bra.medium.minimal_medium), 186

co-

bra.core.summary.metabolite_summary.MetabolitgSummapless () (in module cobra.flux_analysis),

_to_table() (co-
bra.core.summary.MetaboliteSummary
method), 79

_to_table () (cobra.core.summary.ModelSummary
method), 80

_to_table() (cobra.core.summary.Summary
method), 79

_to_table() (co-
method), 76

_to_table () (co-
bra.core.summary.model_summary.ModelSummary
method), 76

_to_table () (co-
bra.core.summary.summary.Summary
method), 78

_underscore_re (in module cobra.io.mat), 165
_update_awareness () (cobra.Reaction method),
258
_update_awareness ()
method), 121
_update_awareness ()
bra.core.reaction.Reaction method), 99
_update_optional () (in module cobra.io.dict),
163
_valid_atoms () (in module cobra.util), 239
_valid_atoms () (in module cobra.util.solver), 232
_warn_format () (in module cobra), 243
_warning_base (in module cobra), 243

A

achr () (in module conftest), 267
ACHRSampler (class in cobra.sampling), 201
ACHRSampler (class in cobra.sampling.achr), 190
add () (cobra.core.DictList method), 108
add () (cobra.core.dictlist.DictList method), 82
add () (cobra.DictList method), 245
add_absolute_expression ()
bra.util), 240
add_absolute_expression ()
bra.util.solver), 233
add_boundary () (cobra.core.Model method), 113
add_boundary () (cobra.core.model.Model
method), 91
add_boundary () (cobra.Model method), 250
add_cons_vars () (cobra.core.Model method), 115
add_cons_vars () (cobra.core.model.Model

method), 92

(cobra.core.Reaction

(co-

(in module co-

(in module co-

156
add_loopless () (in module
bra.flux_analysis.loopless), 138
add_lp_feasibility () (in module cobra.util),
241
add_lp_feasibility () (in
bra.util.solver), 234
add_members () (cobra.core.Group method), 125
add_members () (cobra.core.group.Group method),
86
add_metabolites () (cobra.core.Model method),
113
add_metabolites ()
method), 90
add_metabolites ()
method), 122
add_metabolites ()
bra.core.reaction.Reaction method), 100
add_metabolites () (cobra.Model method), 249
add_metabolites () (cobra.Reaction method),
259
add_mip_ob7j () (in module
bra.medium.minimal_medium), 187
add_moma () (in module cobra.flux_analysis), 156
add_moma () (in module cobra.flux_analysis.moma),
140
add_pfba () (in module
bra.flux_analysis.parsimonious), 141
add_reaction () (cobra.core.Model method), 113
add_reaction () (cobra.core.model.Model
method), 90
add_reaction () (cobra.Model method), 250
add_reactions () (cobra.core.Model method), 114
add_reactions () (cobra.core.model.Model
method), 91
add_reactions () (cobra.Model method), 251
add_room () (in module cobra.flux_analysis), 161
add_room () (in module cobra.flux_analysis.room),
147

co-

module co-

(cobra.core.model.Model
(cobra.core.Reaction

(co-

co-

co-

Index

285

cobra Documentation, Release 0.18.1

add_SBO () (in module cobra.manipulation), 184

add_SBO () (in module co-
bra.manipulation.annotate), 180
add_switches_and_objective () (co-

bra.flux_analysis.gapfilling. GapFiller
method), 135
all_solvers (in module cobra.test.conftest), 225
and_or_search (in module cobra.core.reaction), 96
annotation () (cobra.core.Object property), 118
annotation () (cobra.core.object.Object property),
95
annotation () (cobra.Object property), 254
append () (cobra.core.DictList method), 107
append () (cobra.core.dictlist. DictList method), 81
append () (cobra.DictList method), 244
assert_optimal () (in module cobra.util), 241
assert_optimal () (in module cobra.util.solver),

234
assess () (in module cobra.flux_analysis.reaction),
144
assess_component () (in module co-
bra.flux_analysis.reaction), 145
assess_precursors () (in module co-
bra.flux_analysis.reaction), 145
assess_products () (in module co-
bra.flux_analysis.reaction), 146
ast2str () (in module cobra.core.gene), 84
attribute () (in module co-

bra.test.test_io.test_io_order), 221
AutoVivification (class in cobra.util), 242
AutoVivification (class in cobra.util.util), 235

B

b (in module cobra.sampling.hr_sampler), 192
batch () (cobra.sampling.hr_sampler. HRSampler
method), 194
batch () (cobra.sampling. HRSampler method), 201
BOUND_MINUS_INF (in module cobra.io.sbml), 168
BOUND_PLUS_INF (in module cobra.io.sbml), 168
boundary () (cobra.core.Model property), 115
boundary () (cobra.core.model.Model property), 93
boundary () (cobra.core.Reaction property), 121
boundary () (cobra.core.reaction.Reaction prop-
erty), 99
boundary () (cobra.Model property), 252
boundary () (cobra.Reaction property), 258
bounds (in module cobra.sampling.hr_sampler), 192
bounds () (cobra.core.Reaction property), 119
bounds () (cobra.core.reaction.Reaction property),
97
bounds () (cobra.Reaction property), 256
bounds_tol (cobra.sampling.hr_sampler. HRSampler
attribute), 193
bounds_tol (cobra.sampling. HRSampler attribute),
199
build_reaction_from_string

9] (co-
bra.core.Reaction method), 123

build_reaction_from_string() (co-
bra.core.reaction.Reaction method), 101
build_reaction_from_string/() (co-
bra.Reaction method), 260
build_reaction_string() (co-
bra.core.Reaction method), 123
build_reaction_string() (co-

bra.core.reaction.Reaction method), 101
build_reaction_string() (cobra.Reaction
method), 260

C

captured_output () (in module co-
bra.test.test_core.test_summary), 209
center (cobra.sampling.achrACHRSampler at-

tribute), 191
center (cobra.sampling ACHRSampler attribute),
203
center (cobra.sampling.optgp.OptGPSampler
attribute), 197
center (cobra.sampling.OptGPSampler attribute),

204

check_in_line () (in module co-
bra.test.test_core.test_summary), 209
check_line () (in module co-

bra.test.test_core.test_summary), 209
check_mass_balance () (cobra.core.Reaction
method), 123
check_mass_balance ()
bra.core.reaction.Reaction method), 101
check_mass_balance () (cobra.Reaction
method), 260

(co-

check_mass_balance () (in module co-
bra.manipulation), 184
check_mass_balance () (in module co-

bra.manipulation.validate), 183
check_metabolite_compartment_formula ()
(in module cobra.manipulation), 184
check_metabolite_compartment_formula ()

(in module cobra.manipulation.validate),
183
check_solver_status () (in module cobra.util),
241
check_solver_status/()
bra.util.solver), 234
choose_solver () (in module cobra.util), 239
choose_solver () (in module cobra.util.solver),
232
clean_result (in module update_pickles), 271
cload (in module cobra.test.test_io.test_pickle), 222
cobra (module), 75
cobra.core (module), 75
cobra.core.configuration (module), 80
cobra.core.dictlist (module), 80
cobra.core. formula (module), 83
.gene (module), 84
core.group (module), 85
core.metabolite (module), 86

(in module co-

cobra.
cobra.
cobra.

core

286

Index

cobra Documentation, Release 0.18.1

cobra.core.model (module), 89 cobra.test.test_core.conftest (module),
cobra.core.object (module), 95 210
cobra.core.reaction (module), 96 cobra.test.test_core.test_configuration
cobra.core.singleton (module), 103 (module), 210
cobra.core.solution (module), 103 cobra.test.test_core.test_core_reaction
cobra.core.species (module), 105 (module), 211
cobra.core.summary (module), 75 cobra.test.test_core.test_dictlist
cobra.core.summary.metabolite_summary (module), 213
(module), 75 cobra.test.test_core.test_gene (module),
cobra.core.summary.model_summary (mod- 214
ule), 76 cobra.test.test_core.test_group (mod-
cobra.core.summary.summary (module), 77 ule), 215
cobra.exceptions (module), 242 cobra.test.test_core.test_metabolite
cobra.flux_analysis (module), 129 (module), 215
cobra.flux_analysis.deletion (module), cobra.test.test_core.test_model (mod-
129 ule), 216
cobra.flux_analysis.fastcc (module), 133 cobra.test.test_core.test_solution
cobra.flux_analysis.gapfilling (module), (module), 219
134 cobra.test.test_core.test_summary
cobra.flux_analysis.geometric (module), (module), 206
137 cobra.test.test_core.test_summary.test_metabolite
cobra.flux_analysis.helpers (module), 137 (module), 206
cobra.flux_analysis.loopless (module), cobra.test.test_core.test_summary.test_model_summ
138 (module), 208
cobra.flux_analysis.moma (module), 139 cobra.test.test_core.test_summary.test_reaction_s
cobra.flux_analysis.parsimonious (mod- (module), 209
ule), 141 cobra.test.test_io (module), 219
cobra.flux_analysis.phenotype_phase_plambra.test.test_io.conftest (module), 219
(module), 142 cobra.test.test_io.test_annotation
cobra.flux_analysis.reaction (module), (module), 220
144 cobra.test.test_io.test_annotation_format
cobra.flux_analysis.room (module), 146 (module), 220
cobra.flux_analysis.variability (mod- cobra.test.test_io.test_io_order (mod-
ule), 148 ule), 220
cobra.io (module), 162 cobra.test.test_io.test_json (module),
cobra.io.dict (module), 162 221
cobra.io. json (module), 164 cobra.test.test_io.test_mat (module), 222
cobra.io.mat (module), 165 cobra.test.test_io.test_notes (module),
cobra.io.sbml (module), 166 222
cobra.io.yaml (module), 173 cobra.test.test_io.test_pickle (module),
cobra.manipulation (module), 180 222
cobra.manipulation.annotate (module), 180 cobra.test.test_io.test_sbml (module),
cobra.manipulation.delete (module), 180 223
cobra.manipulation.modify (module), 182 cobra.test.test_io.test_yaml (module),
cobra.manipulation.validate (module), 183 224
cobra.medium (module), 185 cobra.test.test_manipulation (module),
cobra.medium.annotations (module), 185 226
cobra.medium.boundary_types (module), 185 cobra.test.test_medium (module), 226
cobra.medium.minimal_medium (module), 186 cobra.util (module), 228
cobra.sampling (module), 189 cobra.util.array (module), 228
cobra.sampling.achr (module), 189 cobra.util.context (module), 230
cobra.sampling.hr_sampler (module), 192 cobra.util.solver (module), 231
cobra.sampling.optgp (module), 195 cobra.util.util (module), 235
cobra.sampling.sampling (module), 198 cobra_directory (in module cobra.test), 228
cobra.test (module), 206 cobra_location (in module cobra.test), 228
cobra.test.conftest (module), 225 CobraSBMLError, 168
cobra.test.test_core (module), 206 compare_models () (co-
bra.test.test_io.test_sbml. TestCobralO
Index 287

cobra Documentation, Release 0.18.1

class method), 223

compare_models () (in module co-
bra.test.test_io.conftest), 219

compartment_finder (in module co-
bra.core.reaction), 96

compartment_shortlist (in module co-

bra.medium.annotations), 185
compartments (in module update_pickles), 270
compartments () (cobra.core.Model property), 112

compartments () (cobra.core.model.Model prop-
erty), 90

compartments () (cobra.core.Reaction property),
123

compartments () (cobra.core.reaction.Reaction

property), 101
compartments () (cobra.Model property), 249
compartments () (cobra.Reaction property), 260
config (in module cobra.core.reaction), 96
config (in module cobra.io.sbml), 168
config (in module
bra.test.test_core.test_core_reaction), 212
config (in module cobra.test.test_io.test_sbml), 223
config (in module update_pickles), 270
Configuration (class in cobra), 243
Configuration (class in cobra.core), 106
Configuration (class in cobra.core.configuration),

Cco-

80
configuration (in module cobra.core.model), 89
CONFIGURATION (in module co-
bra.flux_analysis.deletion), 129
CONFIGURATION (in module co-

bra.flux_analysis.variability), 148
conftest (module), 267

constraint () (cobra.core.Metabolite property),
110
constraint () (cobra.core.metabolite.Metabolite

property), 87
constraint () (cobra.Metabolite property), 246
constraint_matrices () (in module cobra.util),
237
constraint_matrices() (in
bra.util.array), 229
constraints () (cobra.core.Model property), 115

module co-

constraints () (cobra.core.model. Model prop-
erty), 93

constraints () (cobra.Model property), 252

construct_11_test_model () (in module

test_loopless), 267

copy () (cobra.core.Model method), 113

copy () (cobra.core.model.Model method), 90
copy () (cobra.core.Reaction method), 122

copy () (cobra.core.reaction.Reaction method), 100
copy () (cobra.core.Species method), 127

copy () (cobra.core.species.Species method), 106
copy () (cobra.Model method), 249

copy () (cobra.Reaction method), 258

copy () (cobra.Species method), 262
create_mat_dict () (in module cobra.io.mat),

166
create_mat_metabolite_1id () (in module co-
bra.io.mat), 166
create_stoichiometric_matrix () (in mod-
ule cobra.util), 236
create_stoichiometric_matrix () (in mod-
ule cobra.util.array), 228

create_test_model () (in module cobra.test),
228

D

data_dir (in module cobra.test), 228

data_directory () (inmodule cobra.test.conftest),
225

delete () (cobra.core.Reaction method), 121

delete () (cobra.core.reaction.Reaction method), 99

delete () (cobra.Reaction method), 258

delete_model_genes () (in module co-
bra.manipulation), 184
delete_model_genes () (in module co-

bra.manipulation.delete), 181
demands () (cobra.core.Model property), 116
demands () (cobra.core.model.Model property), 93
demands () (cobra.Model property), 252
description () (cobra.core.Model property), 112
description() (cobra.core.model. Model prop-
erty), 90
description () (cobra.Model property), 249
dict_list () (in module
bra.test.test_core.test_dictlist), 214
DictList (class in cobra), 243
DictList (class in cobra.core), 106
DictList (class in cobra.core.dictlist), 80
double_gene_deletion () (in module
bra.flux_analysis), 151
double_gene_deletion() (in
bra.flux_analysis.deletion), 132
double_reaction_deletion () (in module co-
bra.flux_analysis), 152
double_reaction_deletion () (in module co-
bra.flux_analysis.deletion), 131
dress_results () (cobra.core.LegacySolution
method), 126
dress_results ()
bra.core.solution.LegacySolution
105
dump () (cobra.io.yaml. MyYAML method), 173

E

ecoli_model (in module update_pickles), 270
element_re (in module cobra.core.formula), 83
element_re (in module cobra.core.metabolite), 86
elements () (cobra.core.Metabolite property), 110
elements () (cobra.core.metabolite.Metabolite
property), 87
elements () (cobra.Metabolite property), 247
elements_and_molecular_weights (in mod-
ule cobra.core.formula), 83

co-

Cco-

module co-

(co-

method),

288

Index

cobra Documentation, Release 0.18.1

empty_model () (in module cobra.test.conftest), 225
empty_once () (in module cobra.test.conftest), 225
equalities (in module co-
bra.sampling.hr_sampler), 192
escape_1ID () (in module cobra.manipulation), 184
escape_ID() (in module co-
bra.manipulation.modify), 183
eval_gpr () (in module cobra.core.gene), 84
exchanges () (cobra.core.Model property), 115
exchanges () (cobra.core.model. Model property),
93
exchanges () (cobra.Model property), 252
excludes (in module cobra.medium.annotations),
185
extend () (cobra.core.DictList method), 107
extend () (cobra.core.dictlist. DictList method), 81
extend () (cobra.DictList method), 244

extend_model () (co-
bra.flux_analysis.gapfilling. GapFiller
method), 135

extra_comparisons () (co-

bra.test.test_io.test_sbml. TestCobralO
class method), 223

F

f (cobra.core.LegacySolution attribute), 126
f (cobra.core.solution.LegacySolution attribute), 104
F_GENE (in module cobra.io.sbml), 169
F_GENE_REV (in module cobra.io.sbml), 169
F_GROUP (in module cobra.io.sbml), 169
F_GROUP_REV (in module cobra.io.sbml), 169
F_REACTION (in module cobra.io.sbml), 169
F_REACTION_REV (in module cobra.io.sbml), 169
F_REPLACE (in module cobra.io.sbml), 169
F_SPECIE (in module cobra.io.sbml), 169
F_SPECIE_REV (in module cobra.io.sbml), 169
fastcc () (in module cobra.flux_analysis), 153
fastcc () (in module cobra.flux_analysis.fastcc), 133
feasibility_tol (co-
bra.sampling.hr_sampler. HRSampler at-
tribute), 193
feasibility_tol (cobra.sampling. HRSampler at-
tribute), 199
FeasibleButNotOptimal, 242
figurel_model () (in module test_fastcc), 266
£i11() (cobra.flux_analysis.gapfilling. GapFiller
method), 135
find blocked_reactions ()
bra.flux_analysis), 158
find_blocked_reactions () (in module co-
bra.flux_analysis.variability), 149

(in module co-

find_boundary_types () (in module co-
bra.medium), 188

find_boundary_types () (in module co-
bra.medium.boundary_types), 186

find_carbon_sources () (in module co-

bra.flux_analysis.phenotype_phase_plane),
144

find_essential_genes () (in module co-
bra.flux_analysis), 158
find_essential_genes () (in module co-

bra.flux_analysis.variability), 149
find_essential_reactions () (in module co-
bra.flux_analysis), 159
find_essential_reactions () (in module co-
bra.flux_analysis.variability), 150
find_external_compartment () (in module co-
bra.medium), 188
find_external_compartment () (in module co-
bra.medium.boundary_types), 185
find_gene_knockout_reactions () (in mod-
ule cobra.manipulation), 184
find_gene_knockout_reactions () (in mod-
ule cobra.manipulation.delete), 181
fix_objective_as_constraint () (in module
cobra.util), 240
fix_objective_as_constraint () (in module
cobra.util.solver), 233
float_format (cobra.core.Summary attribute), 128
float_format (cobra.core.summary.Summary at-
tribute), 78
float_format
bra.core.summary.summary.Summary
tribute), 77
flux () (cobra.core.Reaction property), 119
flux () (cobra.core.reaction.Reaction property), 97
flux () (cobra.Reaction property), 256
(cobra.core.Reaction prop-

(co-
at-

flux_expression ()
erty), 118

flux_expression ()
bra.core.reaction.Reaction property), 96

flux_expression () (cobra.Reaction property),
255

flux_variability_analysis () (in module co-
bra.flux_analysis), 159

flux_variability_analysis () (in module co-
bra.flux_analysis.variability), 148

fluxes (cobra.core.Solution attribute), 125

fluxes (cobra.core.solution.Solution attribute), 104

fluxes (cobra.Solution attribute), 261

format_long_string () (in module cobra.util),
242

format_long_string() (in
bra.util.util), 235

formatwarning (in module cobra), 243

Formula (class in cobra.core formula), 83

formula_weight () (cobra.core.Metabolite prop-
erty), 110

(co-

module co-

formula_weight () (co-
bra.core.metabolite.Metabolite ~ property),
87

formula_weight () (cobra.Metabolite property),
247

forward_variable () (cobra.core.Reaction prop-
erty), 118

forward_variable () (co-

Index

289

cobra Documentation, Release 0.18.1

bra.core.reaction.Reaction property), 97
forward_variable () (cobra.Reaction property),
255
from_json () (in module cobra.io), 175
from_json () (in module cobra.io.json), 164
from_mat_struct () (in module cobra.io.mat),
166
from_yaml () (in module cobra.io), 178
from_yaml () (in module cobra.io.yaml), 174

functional () (cobra.core.Gene property), 109

functional () (cobra.core.gene.Gene property), 85

functional () (cobra.core.Reaction property), 121
(

functional () (cobra.core.reaction.Reaction prop-
erty), 99

functional () (cobra.Gene property), 246

functional () (cobra.Reaction property), 257

fva (cobra.core.Summary attribute), 128

fva (cobra.core.summary.Summary attribute), 78

fva (cobra.core.summary.summary.Summary at-
tribute), 77

fva_result (in module update_pickles), 271

fva_results () (in module cobra.test.conftest), 225

fwd_idx (cobra.sampling.achrACHRSampler at-
tribute), 191

fwd_idx (cobra.sampling. ACHRSampler attribute),
202

fwd_idx (cobra.sampling.hr_sampler. HRSampler at-
tribute), 194

fwd_idx (cobra.sampling. HRSampler attribute), 200

fwd_idx (cobra.sampling.optgp.OptGPSampler at-
tribute), 196

fwd_idx (cobra.sampling.OptGPSampler attribute),
204

G

gapfill () (in module cobra.flux_analysis), 154

gapfill () (in module
bra.flux_analysis.gapfilling), 136

GapFiller (class in cobra.flux_analysis.gapfilling),
134

Gene (class in cobra), 246

Gene (class in cobra.core), 109

Gene (class in cobra.core.gene), 85

gene_from_dict () (in module cobra.io.dict), 163

co-

gene_name_reaction_rule () (co-
bra.core.Reaction property), 121
gene_name_reaction_rule () (co-

bra.core.reaction.Reaction property), 99
gene_name_reaction_rule () (cobra.Reaction
property), 257
gene_names (in module update_pickles), 270
gene_reaction_rule (in module update_pickles),
270
gene_reaction_rule ()
property), 121
gene_reaction_rule ()
bra.core.reaction.Reaction property), 99

(cobra.core.Reaction

(co-

gene_reaction_rule () (cobra.Reaction prop-
erty), 257
gene_to_dict () (in module cobra.io.dict), 163
generate_fva_warmup () (co-
bra.sampling.hr_sampler. HRSampler
method), 194
generate_fva_warmup ()
bra.sampling. HRSampler method), 200
genes (cobra.core.Model attribute), 112
genes (cobra.core.model.Model attribute), 89
genes (cobra.Model attribute), 248
genes () (cobra.core.Reaction property), 121
genes () (cobra.core.reaction.Reaction property), 99
genes () (cobra.Reaction property), 257
geometric_fba () (in module cobra.flux_analysis),

(co-

155
geometric_fba () (in module co-
bra.flux_analysis.geometric), 137
geometric_fba_model () (in module

test_geometric), 263
get_associated_groups ()
method), 114

(cobra.core.Model

get_associated_groups () (co-
bra.core.model.Model method), 92
get_associated_groups () (cobra.Model

method), 251
get_by_any () (cobra.core.DictList method), 107
get_by_any () (cobra.core.dictlist. DictList
method), 81
get_by_any () (cobra.DictList method), 243
get_by_1id () (cobra.core.DictList method), 107
get_by_id () (cobra.core.dictlist.DictList method),
81
get_by_1id () (cobra.DictList method), 243
get_coefficient () (cobra.core.Reaction
method), 122
get_coefficient ()
bra.core.reaction.Reaction method), 100
get_coefficient () (cobra.Reaction method),
259
get_coefficients()
method), 122
get_coefficients()
bra.core.reaction.Reaction method), 100
get_coefficients () (cobra.Reaction method),
259
get_compartments ()
method), 123
get_compartments ()
bra.core.reaction.Reaction method), 101
get_compartments () (cobra.Reaction method),

(co-

(cobra.core.Reaction

(co-

(cobra.core.Reaction

(co-

260
get_compiled_gene_reaction_rules () (in
module cobra.manipulation), 184
get_compiled_gene_reaction_rules () (in

module cobra.manipulation.delete), 181
get_context () (in module cobra.util), 238
get_context () (in module cobra.util.context), 230

290

Index

cobra Documentation, Release 0.18.1

get_ids () (in module co-
bra.test.test_io.test_io_order), 221
get_metabolite_compartments () (co-
bra.core.Model method), 112
get_metabolite_compartments () (co-
bra.core.model. Model method), 90
get_metabolite_compartments () (co-

bra.Model method), 249

get_primal_by_id (cobra.core.Solution at-
tribute), 125

get_primal_by_id (cobra.core.solution.Solution
attribute), 104

get_primal_by_id (cobra.Solution attribute), 261

get_solution () (in module cobra.core), 126

get_solution () (in module cobra.core.solution),
105

get_solver_name () (in module cobra.util), 239

get_solver_name () (in module cobra.util.solver),
232

gpr_clean (in module cobra.core.reaction), 96

GPRCleaner (class in cobra.core.gene), 84

Group (class in cobra.core), 124

Group (class in cobra.core.group), 85

groups (cobra.core.Model attribute), 112

groups (cobra.core.model.Model attribute), 89

groups (cobra.Model attribute), 248

H

has_id () (cobra.core.DictList method), 107
has_id () (cobra.core.dictlist.DictList method), 80
has_id () (cobra.DictList method), 243
has_primals (in module cobra.util), 238
has_primals (in module cobra.util.solver), 231
HistoryManager (class in cobra.util), 238
HistoryManager (class in cobra.util.context), 230
homogeneous (in module co-
bra.sampling.hr_sampler), 192
HRSampler (class in cobra.sampling), 199
HRSampler (class in cobra.sampling.hr_sampler),
193

id () (cobra.core.Object property), 118

id () (cobra.core.object.Object property), 95

id () (cobra.Object property), 254

index () (cobra.core.DictList method), 108

index () (cobra.core.dictlist.DictList method), 82

index () (cobra.DictList method), 245

inequalities (in module
bra.sampling.hr_sampler), 192

Infeasible, 242

insert () (cobra.core.DictList method), 108

insert () (cobra.core.dictlist.DictList method), 82

insert () (cobra.DictList method), 245

interface_to_str () (in module cobra.util), 239

interface_to_str() (in module co-
bra.util.solver), 232

Cco-

io_trial () (inmodule cobra.test.test_io.test_sbml),
224

I0Trial (in module cobra.test.test_io.test_sbml), 223

is_boundary_type () (in module cobra.medium),
188

is_boundary_type () (in module
bra.medium.boundary_types), 185

co-

J

json_schema (in module cobra.io.json), 165

JSON__SPEC (in module cobra.io.json), 164

jsonschema (in module cobra.test.test_io.test_sbml),
223

K

keyword_re (in module cobra.core.gene), 84

keywords (in module cobra.core.gene), 84

kind () (cobra.core.Group property), 125

kind () (cobra.core.group.Group property), 86

KIND_TYPES (cobra.core.Group attribute), 125

KIND_TYPES (cobra.core.group.Group attribute), 86

knock_out () (cobra.core.Gene method), 109

knock_out () (cobra.core.gene.Gene method), 85

knock_out () (cobra.core.Reaction method), 123

knock_out () (cobra.core.reaction.Reaction
method), 101

knock_out () (cobra.Gene method), 246

knock_out () (cobra.Reaction method), 260

L

large_model () (in module cobra.test.conftest), 225
large_once () (in module cobra.test.conftest), 225
LegacySolution (class in cobra.core), 126
LegacySolution (class in cobra.core.solution), 104
linear_reaction_coefficients () (in mod-
ule cobra.util), 238
linear_reaction_coefficients () (in mod-
ule cobra.util.solver), 231
list_attr () (cobra.core.DictList method), 107
list_attr () (cobra.core.dictlist.DictList method),
81
list_attr () (cobra.DictList method), 243
11_test_model () (in module test_loopless), 267
load_json_model () (in module cobra.io), 176
load_json_model () (in module cobra.io.json),
165
load_matlab_model () (in module cobra.io), 176
load_matlab_model () (in module cobra.io.mat),
165
load_yaml_model () (in module cobra.io), 179
load_yaml_model () (in module cobra.io.yaml),
174
logger (in module cobra.core.model), 89
logger (in module
bra.core.summary.model_summary), 76
LOGGER (in module cobra.flux_analysis.deletion), 129
LOGGER (in module cobra.flux_analysis.geometric),
137

Cco-

Index

291

cobra Documentation, Release 0.18.1

LOGGER (in module cobra.flux_analysis.helpers), 137

LOGGER (in module cobra.flux_analysis.loopless), 138

LOGGER (in module co-

bra.flux_analysis.parsimonious), 141
(in module

bra.flux_analysis.phenotype_phase_plane),

142

LOGGER (in module cobra.flux_analysis.variability),
148

LOGGER (in module cobra.io.sbml), 168

LOGGER (in module cobra.medium.boundary_types),
185

LOGGER (in module cobra.medium.minimal_medium),
186

LOGGER (in module cobra.sampling.hr_sampler), 192

LOGGER (in module cobra.test.test_io.test_io_order),
221

LOGGER co-

LONG_SHORT_DIRECTION (in module co-
bra.io.sbml), 168

loopless_fva_iter () (in module co-
bra.flux_analysis.loopless), 139

loopless_solution () (in module co-
bra.flux_analysis), 155

loopless_solution () (in module co-

bra.flux_analysis.loopless), 138
lower_bound (in module update_pickles), 270
lower_bound () (cobra.core.Reaction property),

119
lower_bound()

property), 97
lower_bound () (cobra.Reaction property), 256
LOWER_BOUND_ID (in module cobra.io.sbml), 168

M

MAX_TRIES (in module cobra.sampling.hr_sampler),
192

media_compositions (in module update_pickles),
270

medium () (cobra.core.Model property), 112

medium () (cobra.core.model.Model property), 90

medium () (cobra.Model property), 249

medium_model () (in module cobra.test.conftest),
225

members () (cobra.core.Group property), 125

members () (cobra.core.group.Group property), 86

merge () (cobra.core.Model method), 117

merge () (cobra.core.model.Model method), 95

merge () (cobra.Model method), 254

Metabolite (class in cobra), 246

Metabolite (class in cobra.core), 110

Metabolite (class in cobra.core.metabolite), 86

metabolite (cobra.core.MetaboliteSummary
attribute), 127

(cobra.core.reaction.Reaction

metabolite_from_dict () (in module co-
bra.io.dict), 163
metabolite_to_dict () (in module co-

bra.io.dict), 163
metabolites (cobra.core.Model attribute), 112
metabolites (cobra.core.model.Model attribute),
89
metabolites (cobra.Model attribute), 248

metabolites () (cobra.core.Reaction property),
121
metabolites () (cobra.core.reaction.Reaction

property), 99
metabolites () (cobra.Reaction property), 257
metabolites () (in module cobra.test.conftest), 225
MetaboliteSummary (class in cobra.core), 127

MetaboliteSummary (class in co-
bra.core.summary), 79

MetaboliteSummary (class in co-
bra.core.summary.metabolite_summary),
75

mini (in module update_pickles), 270

mini_model () (in module co-

bra.test.test_io.conftest), 219
minimal_medium () (in module cobra.medium),
189

minimal_medium () (in module co-
bra.medium.minimal_medium), 187
minimized_reverse () (in module co-
bra.test.test_io.test_io_order), 221
minimized_shuffle () (in module co-
bra.test.test_io.test_io_order), 221
minimized_sorted() (in module co-

bra.test.test_io.test_io_order), 221

Model (class in cobra), 248

Model (class in cobra.core), 111

Model (class in cobra.core.model), 89

model (cobra.core.Summary attribute), 128

model (cobra.core.summary.Summary attribute), 78

model (cobra.core.summary.summary.Summary at-
tribute), 77

model (cobra.sampling.achrACHRSampler attribute),
190

model (cobra.sampling. ACHRSampler attribute), 202

model (cobra.sampling.hr_sampler. HRSampler
attribute), 193

model (cobra.sampling. HRSampler attribute), 199

model (cobra.sampling.optgp.OptGPSampler
tribute), 196

model (cobra.sampling. OptGPSampler attribute), 204

model () (cobra.core.Reaction property), 121

model () (cobra.core.reaction.Reaction property), 99

model () (cobra.core.Species property), 127

model () (cobra.core.species.Species property), 106

at-

metabolite (cobra.core.summary.metabolite_summaryMeabdlitésahimdigaction property), 258

attribute), 75

model () (cobra.Species property), 262

metabolite (cobra.core.summary.MetaboliteSummarymodel () (in module cobra.test.conftest), 225

attribute), 79

model_from_dict () (in module cobra.io), 175
model_from_dict () (in module cobra.io.dict),

292

Index

cobra Documentation, Release 0.18.1

163
model_to_dict () (in module cobra.io), 175
model_to_dict () (in module cobra.io.dict), 163
model_to_pymatbridge () (in module
bra.io.mat), 166
ModelSummary (class in cobra.core.summary), 79
ModelSummary (class in co-
bra.core.summary.model_summary), 76
moma () (in module cobra.flux_analysis), 157
moma () (in module cobra.flux_analysis.moma), 139
MyYAML (class in cobra.io.yaml), 173

N

n_samples (cobra.sampling.achrACHRSampler at-
tribute), 190

n_samples (cobra.sampling ACHRSampler
tribute), 202

n_samples (cobra.sampling.hr_sampler. HRSampler
attribute), 193

n_samples (cobra.sampling. HRSampler attribute),
200

n_samples (cobra.sampling.optgp.OptGPSampler
attribute), 196

n_samples (cobra.sampling.OptGPSampler
tribute), 204

name (in module update_pickles), 270

names (cobra.core.Summary attribute), 128

names (cobra.core.summary.Summary attribute), 78

names (cobra.core.summary.summary.Summary at-
tribute), 77

Cco-

at-

at-

normalize_cutoff () (in module co-
bra.flux_analysis.helpers), 137
NOT_MASS_BALANCED_TERMS (in module co-

bra.manipulation.validate), 183
nproj (cobra.sampling.achrACHRSampler attribute),
190
nproj (cobra.sampling ACHRSampler attribute), 202
nproj (cobra.sampling.hr_sampler. HRSampler
attribute), 194
nproj (cobra.sampling. HRSampler attribute), 200
nproj (cobra.sampling.optgp.OptGPSampler
tribute), 196
nproj (cobra.sampling. OptGPSampler attribute), 204
nullspace (in module cobra.sampling.hr_sampler),
193
nullspace () (in module cobra.util), 237
nullspace () (in module cobra.util.array), 229
number_start_re (in module cobra.core.gene), 84

O

Object (class in cobra), 254

Object (class in cobra.core), 118

Object (class in cobra.core.object), 95

objective (in module update_pickles), 270

objective () (cobra.core.Model property), 116

objective () (cobra.core.model.Model property),
94

objective () (cobra.Model property), 253

at-

objective_coefficient () (co-
bra.core.Reaction property), 119
objective_coefficient () (co-

bra.core.reaction.Reaction property), 97
objective_coefficient () (cobra.Reaction
property), 255
objective_direction ()
property), 117
objective_direction()
bra.core.model. Model property), 94
objective_direction() (cobra.Model prop-

(cobra.core.Model

(co-

erty), 253
objective_value (cobra.core.Solution attribute),
125

objective_value (cobra.core.solution.Solution
attribute), 104
objective_value (cobra.Solution attribute), 261
opposing_model () (in module test_fastcc), 266
opt_solver () (in module cobra.test.conftest), 225
optgp () (in module test_optgp), 273
OptGPSampler (class in cobra.sampling), 203
OptGPSampler (class in cobra.sampling.optgp), 195
OptimizationError, 238,242
optimize () (cobra.core.Model method), 116
optimize () (cobra.core.model.Model method), 94
optimize () (cobra.Model method), 253

optimize_minimal_flux () (in module co-
bra.flux_analysis.parsimonious), 141
optlang_solvers (in module co-

bra.test.test_core.test_model), 217
optlang_solvers (in module test_solver), 272
OPTLANG_TO_EXCEPTIONS_DICT (in module co-

bra.exceptions), 242
OPTLANG_TO_EXCEPTIONS_DICT (in module co-

bra.util), 238

P

parse_composition ()
bra.core.formula. Formula method), 83
parse_gpr () (in module cobra.core.gene), 85
pattern_from_sbml (in module cobra.io.sbml),
168
pattern_notes (in module cobra.io.sbml), 168
pattern_to_sbml (in module cobra.io.sbml), 168
pfba () (in module cobra.flux_analysis), 157

(co-

pfba () (in module co-
bra.flux_analysis.parsimonious), 141
pfba_fva_results () (in module co-

bra.test.conftest), 225
pop () (cobra.core.DictList method), 108
pop () (cobra.core.dictlist.DictList method), 82
pop () (cobra.DictList method), 245
prev (cobra.sampling.achrACHRSampler attribute),
191
prev (cobra.sampling. ACHRSampler attribute), 203
(cobra.sampling.optgp.OptGPSampler at-
tribute), 196
prev (cobra.sampling. OptGPSampler attribute), 204

prev

Index

293

cobra Documentation, Release 0.18.1

problem (cobra.sampling.achrACHRSampler at-
tribute), 190
problem (cobra.sampling. ACHRSampler attribute),

202
problem (cobra.sampling.hr_sampler. HRSampler at-
tribute), 193

problem (cobra.sampling. HRSampler attribute), 200

problem (cobra.sampling.optgp.OptGPSampler at-
tribute), 196

problem (cobra.sampling.OptGPSampler attribute),
204

Problem (in module cobra.sampling.hr_sampler),
192

problem () (cobra.core.Model property), 115

problem () (cobra.core.model.Model property), 92

problem () (cobra.Model property), 252

production_envelope () (in module co-
bra.flux_analysis), 160

production_envelope () (in module co-
bra.flux_analysis.phenotype_phase_plane),
142

products () (cobra.core.Reaction property), 122
products () (cobra.core.reaction.Reaction prop-
erty), 100
products () (cobra.Reaction property), 259
prune_unused_metabolites () (in module co-
bra.manipulation.delete), 180
prune_unused_reactions () (in module co-
bra.manipulation.delete), 181
pytest (in module cobra.test), 228
pytest_addoption () (in module
bra.test.conftest), 225

Cco-

Q

gp_solvers (in module cobra.util), 238
qp_solvers (in module cobra.util.solver), 231
QUALIFIER_TYPES (in module cobra.io.sbml), 172
query () (cobra.core.DictList method), 107

query () (cobra.core.dictlist.DictList method), 81
query () (cobra.DictList method), 244

R

r (in module update_pickles), 270

raven (in module update_pickles), 271

raven_model () (in module
bra.test.test_io.test_mat), 222

reactants () (cobra.core.Reaction property), 122

reactants () (cobra.core.reaction.Reaction prop-
erty), 100

reactants () (cobra.Reaction property), 259

Reaction (class in cobra), 255

Reaction (class in cobra.core), 118

Reaction (class in cobra.core.reaction), 96

reaction () (cobra.core.Reaction property), 123

reaction () (cobra.core.reaction.Reaction prop-
erty), 101

reaction () (cobra.Reaction property), 260

co-

reaction_elements () (in module co-
bra.flux_analysis.phenotype_phase_plane),
143

reaction_from_dict () (in
bra.io.dict), 163

reaction_to_dict () (in module cobra.io.dict),

module co-

163

reaction_weight () (in module co-
bra.flux_analysis.phenotype_phase_plane),
144

reactions (cobra.core.Model attribute), 112
reactions (cobra.core.model. Model attribute), 89
reactions (cobra.Model attribute), 248
reactions () (cobra.core.Species property), 127
reactions () (cobra.core.species.Species property),
106
reactions () (cobra.Species property), 262
read_sbml_model () (in module cobra.io), 177
read_sbml_model () (in module cobra.io.sbml),
169
read_sbml_model () (in module cobra.test), 227
reduced_cost () (cobra.core.Reaction property),
120
reduced_cost ()
property), 98
reduced_cost () (cobra.Reaction property), 257
reduced_costs (cobra.core.Solution attribute), 125
reduced_costs (cobra.core.solution.Solution at-
tribute), 104
reduced_costs (cobra.Solution attribute), 261
remove () (cobra.core.DictList method), 108
remove () (cobra.core.dictlist. DictList method), 82
remove () (cobra.DictList method), 245
remove_cons_vars () (cobra.core.Model
method), 115
remove_cons_vars ()
method), 92
remove_cons_vars () (cobra.Model method), 251
remove_cons_vars_from_problem () (in mod-
ule cobra.util), 240
remove_cons_vars_from_problem () (in mod-
ule cobra.util.solver), 233
remove_from_model ()
method), 109
remove_from_model ()
method), 85
remove_from_model ()
method), 111
remove_from_model ()
bra.core.metabolite. Metabolite
88
remove_from_model ()
method), 121
remove_from_model ()
bra.core.reaction.Reaction method), 99
remove_from_model () (cobra.Gene method), 246
remove_from_model () (cobra.Metabolite
method), 247

(cobra.core.reaction.Reaction

(cobra.core.model.Model

(cobra.core.Gene
(cobra.core.gene.Gene
(cobra.core.Metabolite

(co-
method),

(cobra.core.Reaction

(co-

294

Index

cobra Documentation, Release 0.18.1

remove_from_model () (cobra.Reaction method),
258

remove_genes () (in module cobra.manipulation),
184

remove_genes () (in module
bra.manipulation.delete), 182

remove_groups () (cobra.core.Model method), 114

remove_groups () (cobra.core.model.Model
method), 92

remove_groups () (cobra.Model method), 251

remove_members () (cobra.core.Group method),
125

remove_members ()
method), 86

remove_metabolites ()
method), 113

remove_metabolites ()
bra.core.model.Model method), 90

remove_metabolites () (cobra.Model method),

co-

(cobra.core.group.Group
(cobra.core.Model

(co-

249

remove_reactions () (cobra.core.Model
method), 114

remove_reactions () (cobra.core.model.Model
method), 91

remove_reactions () (cobra.Model method), 251

rename_genes () (in module co-
bra.manipulation.modify), 183

repair () (cobra.core.Model method), 116

repair () (cobra.core.model.Model method), 94

repair () (cobra.Model method), 253

replacements (in module cobra.core.gene), 84

reset () (cobra.util.context.HistoryManager
method), 230

reset () (cobra.util.HistoryManager method), 238

resettable () (in module cobra.util), 238

resettable () (in module cobra.util.context), 230

retries (cobra.sampling.achrACHRSampler at-
tribute), 190

retries (cobra.sampling ACHRSampler attribute),
202

retries (cobra.sampling.hr_sampler HRSampler at-
tribute), 193

retries (cobra.sampling. HRSampler attribute), 200

retries (cobra.sampling.optgp.OptGPSampler at-
tribute), 196

retries (cobra.sampling.OptGPSampler attribute),

204

rev_idx (cobra.sampling.achrACHRSampler at-
tribute), 191

rev_idx (cobra.sampling ACHRSampler attribute),
202

rev_idx (cobra.sampling.hr_sampler. HRSampler at-
tribute), 194

rev_idx (cobra.sampling. HRSampler attribute), 200

rev_idx (cobra.sampling.optgp.OptGPSampler at-
tribute), 196

rev_idx (cobra.sampling.OptGPSampler attribute),
204

reverse () (cobra.core.DictList method), 109

reverse () (cobra.core.dictlist.DictList method), 82

reverse () (cobra.DictList method), 245

reverse_1id () (cobra.core.Reaction property), 118

reverse_1id () (cobra.core.reaction.Reaction prop-
erty), 96

reverse_id () (cobra.Reaction property), 255

reverse_variable () (cobra.core.Reaction prop-
erty), 119

reverse_variable ()
bra.core.reaction.Reaction property), 97

reverse_variable () (cobra.Reaction property),

(co-

255

reversibility () (cobra.core.Reaction property),
121

reversibility () (cobra.core.reaction.Reaction

property), 99
reversibility () (cobra.Reaction property), 258
room () (in module cobra.flux_analysis), 162
room () (in module cobra.flux_analysis.room), 146

S

salmonella (in module update_pickles), 270

salmonella () (in module cobra.test.conftest), 225

same_ex () (in module co-
bra.test.test_core.test_model), 217

sample () (cobra.sampling.achrACHRSampler
method), 191

sample () (cobra.sampling. ACHRSampler method),
203

sample () (cobra.sampling.hr_sampler. HRSampler
method), 194

sample () (cobra.sampling. HRSampler method), 201

sample () (cobra.sampling.optgp.OptGPSampler
method), 197

sample () (cobra.sampling.OptGPSampler method),
205

sample () (in module cobra.sampling), 205

sample () (in module cobra.sampling.sampling), 198

save_json_model () (in module cobra.io), 176

save_json_model () (in module cobra.io.json),
164

save_matlab_model () (in module cobra.io), 177

save_matlab_model () (in module cobra.io.mat),
166

save_yaml_model () (in module cobra.io), 179

save_yaml_model () (in module cobra.io.yaml),
174

SBML_DOT (in module cobra.io.sbml), 168

SBO_DEFAULT_FLUX_BOUND (in module co-
bra.io.sbml), 168
SBO_EXCHANGE_REACTION (in module co-

bra.io.sbml), 168
SBO_FBA_FRAMEWORK (in module cobra.io.sbml),
168
SBO_FLUX_BOUND (in module cobra.io.sbml), 168
sbo_terms (in module cobra.medium), 188

Index

295

cobra Documentation, Release 0.18.1

sbo_terms (in module cobra.medium.annotations),
185

scipy (in module cobra.test.test_io.test_mat), 222

scipy (in module test_array), 271

scipy_sparse (in module cobra.io.mat), 165

seed (cobra.sampling.achrACHRSampler attribute),
190

seed (cobra.sampling. ACHRSampler attribute), 202

seed (cobra.sampling.hr_sampler HRSampler at-
tribute), 194

seed (cobra.sampling. HRSampler attribute), 200

seed (cobra.sampling.optgp.OptGPSampler at-
tribute), 196

seed (cobra.sampling. OptGPSampler attribute), 204

set_objective () (in module cobra.util), 239

set_objective () (in module cobra.util.solver),

232

shadow_price () (cobra.core.Metabolite property),
110

shadow_price () (co-
bra.core.metabolite.Metabolite ~ property),

87
shadow_price () (cobra.Metabolite property), 247
shadow_prices (cobra.core.Solution attribute), 125
shadow_prices (cobra.core.solution.Solution at-
tribute), 104
shadow_prices (cobra.Solution attribute), 261
shared_np_array () (in module cobra.sampling),

201
shared_np_array () (in module co-
bra.sampling.hr_sampler), 193
SHORT_LONG_DIRECTION (in module co-

bra.io.sbml), 168
show_versions () (in module cobra), 262
show_versions () (in module cobra.util), 242
show_versions () (in module cobra.util.util), 235

single_gene_deletion () (in module co-
bra.flux_analysis), 152
single_gene_deletion () (in module co-

bra.flux_analysis.deletion), 131
single_reaction_deletion () (in module co-
bra.flux_analysis), 153
single_reaction_deletion () (in module co-
bra.flux_analysis.deletion), 130
Singleton (class in cobra.core.singleton), 103
sinks () (cobra.core.Model property), 116
sinks () (cobra.core.model. Model property), 93
sinks () (cobra.Model property), 252
slim_optimize () (cobra.core.Model method), 116
slim_optimize () (cobra.core.model.Model
method), 93
slim_optimize () (cobra.Model method), 252
small_model () (in module cobra.test.conftest), 225
Solution (class in cobra), 261
Solution (class in cobra.core), 125
Solution (class in cobra.core.solution), 103
solution (cobra.core.Model attribute), 112
solution (cobra.core.model. Model attribute), 89

solution (cobra.core.Summary attribute), 128

solution (cobra.core.summary.Summary attribute),
78

solution (cobra.core.summary.summary.Summary
attribute), 77

solution (cobra.Model attribute), 248

solution (in module update_pickles), 271

solved_model () (in module cobra.test.conftest),
225

solved_model () (in module
bra.test.test_core.conftest), 210

solver (cobra.core.LegacySolution attribute), 126

solver (cobra.core.solution.LegacySolution at-
tribute), 104

solver (in module update_pickles), 270

solver () (cobra.core.Model property), 112

solver () (cobra.core.model. Model property), 89

solver () (cobra.Model property), 249

solver_trials (in module
bra.test.test_core.conftest), 210

SolverNotFound, 238, 242

solvers (in module cobra.util), 238

solvers (in module cobra.util.solver), 231

sort () (cobra.core.DictList method), 109

sort () (cobra.core.dictlist.DictList method), 82

sort () (cobra.DictList method), 245

Species (class in cobra), 262

Species (class in cobra.core), 127

Species (class in cobra.core.species), 105

stable_optlang (in module cobra.test.conftest),

co-

Cco-

225
stable_optlang (in module co-
bra.test.test_core.test_core_reaction), 212
stable_optlang (in module co-

bra.test.test_core.test_model), 217
stable_optlang (in module test_solver), 272
status (cobra.core.Solution attribute), 125
status (cobra.core.solution.Solution attribute), 104
status (cobra.Solution attribute), 261
step () (in module cobra.sampling), 201
step () (in module cobra.sampling.hr_sampler), 195
subtract_metabolites () (cobra.core.Reaction

method), 123
subtract_metabolites ()

bra.core.reaction.Reaction method), 101
subtract_metabolites () (cobra.Reaction

method), 259
Summary (class in cobra.core), 128
Summary (class in cobra.core.summary), 78
Summary (class in cobra.core.summary.summary), 77
summary () (cobra.core.Metabolite method), 111
summary () (cobra.core.metabolite.Metabolite

method), 88
summary () (cobra.core.Model method), 117
summary () (cobra.core.model.Model method), 94
summary () (cobra.core.Reaction method), 124
(cobra.core.reaction.Reaction method),

(co-

summary ()

102

296

Index

cobra Documentation, Release 0.18.1

summary () (cobra.Metabolite method), 247
summary () (cobra.Model method), 253
summary () (cobra.Reaction method), 260

T

template () (in module co-
bra.test.test_io.test_io_order), 221

test_absolute_expression () (in module
test_solver), 272

test_achr (module), 273

test_achr_init_benchmark () (in module
test_achr), 274

test_achr_sample_benchmark () (in module
test_achr), 274

test_add() (in module co-
bra.test.test_core.test_core_reaction), 212

test_add () (in module co-
bra.test.test_core.test_dictlist), 214

test_add_boundary () (in module co-

bra.test.test_core.test_model), 217
test_add_boundary_context () (in module co-
bra.test.test_core.test_model), 218
test_add_cobra_reaction () (in module co-
bra.test.test_core.test_model), 218
test_add_existing_boundary () (in module
cobra.test.test_core.test_model), 218
test_add_lexicographic_constraints()
(in module test_solver), 272
test_add_loopless () (in module test_loopless),
268

test_add_lp_feasibility () (in module
test_solver), 272
test_add_metabolite () (in module co-

bra.test.test_core.test_core_reaction), 212
test_add_metabolite () (in module

bra.test.test_core.test_model), 217
test_add_metabolite_benchmark () (in mod-

ule cobra.test.test_core.test_core_reaction),

Cco-

212
test_add_metabolite_from_solved_model ()
(in module co-

bra.test.test_core.test_core_reaction), 212
test_add_metabolites_combine_false ()
(in module co-
bra.test.test_core.test_core_reaction), 213
test_add_metabolites_combine_true()
(in module
bra.test.test_core.test_core_reaction), 213
test_add_reaction() (in module
bra.test.test_core.test_model), 217
test_add_reaction_context () (in module co-
bra.test.test_core.test_model), 217
test_add_reaction_from_other_model ()
(in module cobra.test.test_core.test_model),
217
test_add_reaction_orphans () (in module co-
bra.test.test_core.test_model), 218

co-

co-

test_add_reactions () (in module co-
bra.test.test_core.test_model), 218

test_add_reactions_duplicate () (in mod-
ule cobra.test.test_core.test_model), 218

test_add_reactions_single_existing()
(in module cobra.test.test_core.test_model),
218

test_add_remove () (in module test_solver), 272

test_add_remove_in_context () (in module
test_solver), 272

test_add_remove_reaction_benchmark ()
(in module cobra.test.test_core.test_model),
217

test_all () (in module cobra.test), 228

test_all_objects_point_to_all_other_ correct_objec

(in module cobra.test.test_core.test_model),
218

test_append/() (in module co-
bra.test.test_core.test_dictlist), 214

test_array (module), 271

test_assess () (in module test_reaction), 264

test_bad_exchange () (co-

bra.test.test_medium.TestErrorsAndExceptions
method), 227
test_batch_sampling () (in module test_achr),

274
test_batch_sampling () (in module test_optgp),
273
test_benchmark_medium_linear () (co-
bra.test.test_medium.TestMinimalMedia
method), 227
test_benchmark_medium_mip () (co-

bra.test.test_medium. TestMinimalMedia
method), 227
test_boundary_conditions () (in module co-
bra.test.test_io.test_sbml), 224
test_bounds () (in module
bra.test.test_core.test_configuration), 210
test_bounds_setter () (in module
bra.test.test_core.test_core_reaction), 212
test_build_from_string () (in module co-
bra.test.test_core.test_core_reaction), 212
test_change_bounds () (in module
bra.test.test_core.test_core_reaction), 212
test_change_id_is_reflected_in_solver ()

co-

co-

co-

(in module co-

bra.test.test_core.test_core_reaction), 213
test_change_objective () (in module co-

bra.test.test_core.test_model), 218
test_change_objective_benchmark () (in

module cobra.test.test_core.test_model), 218

test_change_objective_through_objective_coefficie

(in module cobra.test.test_core.test_model),
218

test_change_solver_to_cplex_and_check_copy_works (

(in module cobra.test.test_core.test_model),
219
test_choose_solver () (in module test_solver),

Index

297

cobra Documentation, Release 0.18.1

272 test_sampling), 274
test_compartments () (in module co- test_escape_ids|() (co-
bra.test.test_core.test_model), 217 bra.test.test_manipulation. TestManipulation
test_complicated_model () (in module method), 226
test_sampling), 275 test_essential_genes|() (in module
test_contains () (in module co- test_variability), 265
bra.test.test_core.test_dictlist), 214 test_essential_reactions () (in module
test_context_manager () (in module co- test_variability), 265
bra.test.test_core.test_model), 218 test_exchange () (co-
test_copy () (in module co- bra.test.test_medium.TestTypeDetection
bra.test.test_core.test_core_reaction), 212 method), 226
test_copy () (in module co- test_exchange_reactions () (in module co-
bra.test.test_core.test_dictlist), 214 bra.test.test_core.test_model), 217
test_copy () (in module co- test_extend() (in module co-
bra.test.test_core.test_model), 218 bra.test.test_core.test_dictlist), 214
test_copy_benchmark () (in module co- test_external_ compartment () (co-
bra.test.test_core.test_model), 218 bra.test.test_medium.TestTypeDetection
test_copy_benchmark_large_model () (in method), 226

test_fail non_linear_reaction_coefficients()
(in module test_solver), 272

test_fastcc (module), 266

test_fastcc_against_fva_nonblocked_rxns ()

module cobra.test.test_core.test_model), 218

test_copy_preserves_existing_solution ()
(in module cobra.test.test_core.test_model),
219

test_copy_with_groups () (in module co- (in module test_fastcc), 266
bra.test.test_core.test_model), 218 test_fastcc_benchmark () (in module

test_deepcopy () (in module co- test_fastcc), 266
bra.test.test_core.test_dictlist), 214 test_figurel () (in module test_fastcc), 266

test_deepcopy () (in module co- test_filehandle () (in module co-

bra.test.test_core.test_model), 218
test_deepcopy_benchmark () (in module co-
bra.test.test_core.test_model), 218
test_default_bounds () (in module
bra.test.test_core.test_configuration), 210
test_default_tolerance () (in module co-
bra.test.test_core.test_configuration), 210
test_deletion (module), 268
test_demand ()
bra.test.test_medium.TestTypeDetection
method), 226
test_dense_matrix ()
271
test_dir () (in module
bra.test.test_core.test_dictlist), 214
test_double_gene_deletion () (in module
test_deletion), 269
test_double_gene_deletion_benchmark ()
(in module test_deletion), 269
test_double_reaction_deletion () (in mod-
ule test_deletion), 269

Cco-

(co-

(in module test_array),

Cco-

test_double_reaction_deletion_benchmarkt@st_from_ sbml_string()

(in module test_deletion), 269

test_envelope_multi_reaction_objective Qest_fva_data_frame ()

(in module test_phenotype_phase_plane),

270
test_envelope_one () (in module
test_phenotype_phase_plane), 270
test_envelope_two () (in module

test_phenotype_phase_plane), 270
test_equality_constraint () (in module

bra.test.test_io.test_sbml), 224
test_find_blocked_reactions () (in module
test_variability), 265

test_find_blocked_reactions_solver_none ()

(in module test_variability), 265
test_fix_objective_as_constraint () (in
module test_solver), 272

test_fix_objective_as_constraint_minimize ()

(in module test_solver), 272
test_fixed_seed () (in module test_sampling),

274
test_flux_variability () (in module
test_variability), 265
test_flux_variability_benchmark () (in
module test_variability), 265
test_flux_variability_loopless|() (in

module test_variability), 265

test_flux_variability_loopless_benchmark ()

(in module test_variability), 265
test_formula_element_setting() (in mod-
ule cobra.test.test_core.test_metabolite), 215

(in module co-
bra.test.test_io.test_sbml), 224
(in module
test_variability), 265
test_fva_infeasible () (in module
test_variability), 265
test_fva _minimization () (in module

test_variability), 265
test_gapfilling (module), 264
test_gapfilling () (in module test_gapfilling),

298

Index

cobra Documentation, Release 0.18.1

264
test_gene_knock_out () (in module
bra.test.test_core.test_core_reaction), 212
test_gene_knockout_computation () (co-
bra.test.test_manipulation. TestManipulation
method), 226
test_geometric (module), 263
test_geometric_fba () (in
test_geometric), 263
test_geometric_fba_benchmark () (in mod-
ule test_geometric), 263
test_get_by_any () (in module
bra.test.test_core.test_dictlist), 214
test_get_objective_direction () (in mod-
ule cobra.test.test_core.test_model), 218
test_gpr () (in module
bra.test.test_core.test_core_reaction), 212
test_gpr_modification() (in module
bra.test.test_core.test_core_reaction), 212
test_gprs() (in module
bra.test.test_io.test_sbml), 224
test_group_add_elements () (in module co-
bra.test.test_core.test_group), 215
test_group_kind() (in module
bra.test.test_core.test_group), 215
test_group_loss_of_elements () (in module
cobra.test.test_core.test_model), 217
test_group_members_add_to_model () (in
module cobra.test.test_core.test_model), 217

co-

module

co-

co-

co-

Cco-

Cco-

test_group_model_reaction_association ()test_load_yaml_model () (in

(in module cobra.test.test_core.test_model),

217
test_groups () (in module co-
bra.test.test_io.test_sbml), 224
test_iadd() (in module co-
bra.test.test_core.test_core_reaction), 212
test_iadd () (in module co-

bra.test.test_core.test_dictlist), 214
test_identifiers_annotation () (in module
cobra.test.test_io.test_sbml), 224

test_independent () (in module co-
bra.test.test_core.test_dictlist), 214
test_index () (in module co-
bra.test.test_core.test_dictlist), 214
test_inequality_constraint () (in module
test_sampling), 274
test_infinity_bounds () (in module co-

bra.test.test_io.test_sbml), 224
test_inhomogeneous_sanity ()
test_sampling), 275

(in module

test_invalid_solver_change_raises|()
(in module cobra.test.test_core.test_model),
219

test_io_order () (in module
bra.test.test_io.test_io_order), 221

test_irrev_reaction_set_negative_1lb ()

Cco-

(in module co-

bra.test.test_core.test_core_reaction), 213
test_isub () (in module co-

bra.test.test_core.test_dictlist), 214
test_knockout () (in module co-

bra.test.test_core.test_core_reaction), 213
test_linear_moma_sanity () (in module

test_moma), 267
test_linear_reaction_coefficients()

(in module test_solver), 272
test_linear_room_sanity () (in

test_room), 262

module

test_load_json_model () (in module co-
bra.test.test_io.test_json), 221
test_load_json_model_invalid()
(in module co-
bra.test.test_io.test_annotation_format),
220
test_load_json_model_valid () (in module

cobra.test.test_io.test_annotation_format),
220
test_load_matlab_model () (in module co-
bra.test.test_io.test_mat), 222
module co-
bra.test.test_io.test_yaml), 224
test_loopless (module), 267
test_loopless_benchmark_after () (in mod-
ule test_loopless), 268
test_loopless_benchmark_before () (in
module test_loopless), 267
test_loopless_pfba_fva() (in
test_variability), 265
test_loopless_solution ()
test_loopless), 268
test_loopless_solution_fluxes () (in mod-
ule test_loopless), 268
test_make_irreversible () (in module co-
bra.test.test_core.test_core_reaction), 212

module

(in module

test_make_irreversible_irreversible_to_the_other_

(in module
bra.test.test_core.test_core_reaction), 212

co-

test_make_lhs_irreversible_reversible ()

(in module
bra.test.test_core.test_core_reaction), 212

co-

test_init_copy () (in module co- test_make_reversible() (in module co-
bra.test.test_core.test_dictlist), 214 bra.test.test_core.test_core_reaction), 212
test_insert () (in module co- test_mass_balance () (in module co-
bra.test.test_core.test_dictlist), 214 bra.test.test_core.test_core_reaction), 212
test_interface_str () (in module test_solver), test_medium_alternative_mip () (co-
272 bra.test.test_medium.TestMinimalMedia
test_invalid_objective_raises () (inmod- method), 227
ule cobra.test.test_core.test_model), 219 test_medium_exports () (co-
Index 299

cobra Documentation, Release 0.18.1

bra.test.test_medium.TestMinimalMedia 208
method), 227 test_model_summary_to_frame_with_fva ()
test_medium_linear () (co- (in module co-
bra.test.test_medium. TestMinimalMedia bra.test.test_core.test_summary.test_model_summary),
method), 227 208
test_medium mip () (co- test_model_summary_to_table ()
bra.test.test_medium. TestMinimalMedia (in module co-

method), 227 bra.test.test_core.test_summary.test_model_summary),
test_merge_models () (in module co- 208

bra.test.test_core.test_model), 218
test_metabolite_formula () (in module co-

bra.test.test_core.test_metabolite), 215

(in module co-
bra.test.test_core.test_summary.test_model_summary),

test_metabolite_summary_to_frame () 208
(in module co- test_model_summary_to_table_with_fva()
bra.test.test_core.test_summary.test_metabolite_summary§in module co-
207 bra.test.test_core.test_summary.test_model_summary),
test_metabolite_summary_to_frame_previous_sol@f8on ()
(in module co- test_moma (module), 266
bra.test.test_core.test_summary.test_metabolite tsammarpa_sanity () (in module test_moma), 267
207 test_mul () (in module co-
test_metabolite_summary_to_frame_with_fva () bra.test.test_core.test_core_reaction), 212
(in module co- test_multi_external () (co-
bra.test.test_core.test_summary.test_metabolite_summarypra.test.test_medium.TestTypeDetection
207 method), 226
test_metabolite_summary_to_table () test_multi_optgp () (in module test_sampling),
(in module co- 274
bra.test.test_core.test_summary.test_metabolite tsammany)] ti_variable_envelope () (in mod-
207 ule test_phenotype_phase_plane), 270
test_metabolite_summary_to_table_previdsstsaloithdammdary_reactions () (co-
(in module co- bra.test.test_medium.TestErrorsAndExceptions
bra.test.test_core.test_summary.test_metabolite_summarymethod), 227
207 test_no_change_for_same_solver () (in
test_metabolite_summary_to_table_with_fva () module cobra.test.test_core.test_model), 219
(in module co- test_no_names_or_boundary_reactions ()
bra.test.test_core.test_summary.test_metabolite_summary§cobra.test.test_medium.TestErrorsAndExceptions
207 method), 227
test_missing_flux_boundsl () (in module co- test_notes () (in module co-

bra.test.test_io.test_sbml), 224 bra.test.test_io.test_notes), 222
test_missing_flux_bounds?2 () (inmodule co- test_objective () (in module co-
bra.test.test_io.test_sbml), 224 bra.test.test_core.test_model), 218

test_model_ summary_to_table_previous_solution ()

test_model_from_other_model () (in module test_objective_coefficient_reflects_changed_objec

cobra.test.test_core.test_model), 218 (in module cobra.test.test_core.test_model),
test_model_history () (in module co- 218
bra.test.test_io.test_sbml), 224

test_model_less_reaction () (in module co- (in module cobra.test.test_core.test_model),

test_objects_point_to_correct_other_after_copy ()

bra.test.test_core.test_core_reaction), 212 218
test_model_ _medium() (co- test_one_left_to_right_reaction_set_positive_ub ()
bra.test.test_medium. TestModelMedium (in module co-

method), 226

test_model_remove_reaction () (in module

cobra.test.test_core.test_model), 217

bra.test.test_core.test_core_reaction), 213

test_open_exchanges () (co-

bra.test.test_medium.TestMinimalMedia

test_model_summary_to_frame () method), 227

(in module co- test_opposing () (in module test_fastcc), 266

bra.test.test_core.test_summary.test_model_sumpezy), opt gp (module), 273

208 test_optgp_init_benchmark () (in module
test_model_summary_to_frame_previous_solutionfdst_optgp), 273

(in module co- test_optgp_sample_benchmark () (in module

bra.test.test_core.test_summary.test_model_summary), test_optgp), 273

300 Index

cobra Documentation, Release 0.18.1

test_optimize () (in module co- test_read_write_sbml_annotations () (in
bra.test.test_core.test_model), 218 module cobra.test.test_io.test_annotation),
test_parallel_flux_variability () (in 220
module test_variability), 265 test_removal () (in module co-
test_parsimonious (module), 263 bra.test.test_core.test_dictlist), 214
test_pfba () (in module test_parsimonious), 263 test_removal_ from model_retains_bounds ()
test_pfba_benchmark () (in module (in module co-
test_parsimonious), 263 bra.test.test_core.test_core_reaction), 212
test_pfba_flux_variability () (in module test_remove_from_model () (in module co-
test_variability), 265 bra.test.test_core.test_core_reaction), 213
test_phenotype_phase_plane (module), 270 test_remove_from_model () (in module co-
test_pickle () (in module co- bra.test.test_core.test_metabolite), 215
bra.test.test_core.test_dictlist), 214 test_remove_gene () (in module co-
test_problem_properties () (in module co- bra.test.test_core.test_model), 217
bra.test.test_core.test_model), 218 test_remove_genes () (co-
test_prune_unused_mets_functionality () bra.test.test_manipulation. TestManipulation
(cobra.test.test_manipulation. TestManipulation method), 226
method), 226 test_remove_metabolite_destructive ()
test_prune_unused_mets_output_type () (in module cobra.test.test_core.test_model),
(cobra.test.test_manipulation. TestManipulation 217
method), 226 test_remove_metabolite_ subtractive ()
test_prune_unused_rxns_functionality () (in module cobra.test.test_core.test_model),
(cobra.test.test_manipulation. TestManipulation 217
method), 226 test_remove_reactions () (in module co-
test_prune_unused_rxns_output_type () bra.test.test_core.test_model), 218
(cobra.test.test_manipulation. TestManipulationtest_rename_gene () (co-
method), 226 bra.test.test_manipulation. TestManipulation
test_query () (in module co- method), 226
bra.test.test_core.test_dictlist), 214 test_repr_html_ () (in module co-
test_radd() (in module co- bra.test.test_core.test_core_reaction), 213
bra.test.test_core.test_core_reaction), 212 test_repr_html_ () (in module co-
test_reaction (module), 264 bra.test.test_core.test_gene), 214
test_reaction_delete() (in module co- test_repr_html_ () (in module co-
bra.test.test_core.test_model), 217 bra.test.test_core.test_metabolite), 215
test_reaction_imul () (in module co- test_repr_html_ () (in module co-
bra.test.test_core.test_core_reaction), 213 bra.test.test_core.test_model), 219
test_reaction_remove () (in module co- test_reproject () (in module test_optgp), 273
bra.test.test_core.test_model), 217 test_room (module), 262
test_reaction_summary_to_frame () test_room_sanity () (in module test_room), 262
(in module co- test_sampling (module), 274
bra.test.test_core.test_summary.test_reaction_smmgsaryyampling () (in module test_achr), 274
209 test_sampling () (in module test_optgp), 273
test_reaction_summary_to_table () test_save_json_model () (in module co-
(in module co- bra.test.test_io.test_json), 221
bra.test.test_core.test_summary.test_reaction_sumgsarypave_matlab_model () (in module co-
209 bra.test.test_io.test_mat), 222
test_reaction_without_model () (in module test_save_yaml_model() (in module co-
cobra.test.test_core.test_core_reaction), 213 bra.test.test_io.test_yaml), 224
test_read_1 () (co- test_sbo_annotation () (co-
bra.test.test_io.test_sbml. TestCobralO bra.test.test_manipulation. TestManipulation
method), 224 method), 226
test_read_2 () (co- test_sbo_terms () (co-
bra.test.test_io.test_sbml. TestCobralO bra.test.test_medium.TestTypeDetection
method), 224 method), 226
test_read_pickle() (in module co- test_set () (in module co-
bra.test.test_io.test_pickle), 223 bra.test.test_core.test_dictlist), 214
test_read_sbml_annotations () (in module test_set_bounds_scenario_1 () (in module
cobra.test.test_io.test_annotation), 220 cobra.test.test_core.test_core_reaction), 212

Index 301

cobra Documentation, Release 0.18.1

test_set_bounds_scenario_2 () (in module
cobra.test.test_core.test_core_reaction), 212
test_set_bounds_scenario_3 () (in module
cobra.test.test_core.test_core_reaction), 212
test_set_bounds_scenario_4 () (in module
cobra.test.test_core.test_core_reaction), 212
test_set_id() (in module
bra.test.test_core.test_metabolite), 215

co-

test_set_1b_higher_ than_ub_sets_ub_to_new_1lb ((in

(in module
bra.test.test_core.test_core_reaction), 213
test_set_objective_direction () (in mod-
ule cobra.test.test_core.test_model), 218
test_set_reaction_objective () (in module
cobra.test.test_core.test_model), 219
test_set_reaction_objective_str () (in
module cobra.test.test_core.test_model), 219

co-

method), 226

test_slice () (in module co-
bra.test.test_core.test_dictlist), 214

test_slim_optimize () (in module co-
bra.test.test_core.test_model), 218

test_smbl_with_notes () (in module co-

bra.test.test_io.test_sbml), 224
test_solution_contains_only_reaction_specific_val
module

bra.test.test_core.test_solution), 219
test_solution_data_frame () (in module co-

bra.test.test_core.test_model), 218
test_solver (module), 272
test_solver () (in module

bra.test.test_core.test_configuration), 210
test_solver_change () (in module

bra.test.test_core.test_model), 219

co-

co-

co-

test_set_ub_lower_than_lb_sets_lb_to_newesib Qolver_list () (in module test_solver), 272

(in module co-

bra.test.test_core.test_core_reaction), 213

test_set_upper_before_lower_bound_to_0()

(in module
bra.test.test_core.test_core_reaction), 212
test_show_versions () (in module test_util), 271
test_single_achr () (in module test_sampling),
274
test_single_gene_deletion_fba () (in mod-
ule test_deletion), 269

co-

test_single_gene_deletion_fba_benchmark ()

(in module test_deletion), 268

test_single_gene_deletion_linear_moma ()

(in module test_deletion), 269

test_solver_name () (in module test_solver), 272
test_sort_and_reverse () (in module
bra.test.test_core.test_dictlist), 214

test_sparse_matrix () (in module test_array),

co-

271
test_str() (in module co-
bra.test.test_core.test_core_reaction), 212
test_str_from model () (in module co-
bra.test.test_core.test_core_reaction), 212
test_sub () (in module co-
bra.test.test_core.test_core_reaction), 212
test_sub () (in module co-

bra.test.test_core.test_dictlist), 214
test_subtract_metabolite () (in module co-

test_single_gene_deletion_linear_moma_benchmabkalest.test_core.test_core_reaction), 212

(in module test_deletion), 269

test_single_gene_deletion_linear_room_benchmati ()

(in module test_deletion), 269
test_single_gene_deletion_moma () (in
module test_deletion), 269

test_single_gene_deletion_moma_benchmark ()

(in module test_deletion), 269

test_single_gene_deletion_moma_reference () (in

(in module test_deletion), 269

test_single_gene_deletion_room_benchmarke@t_transfer_objective ()

(in module test_deletion), 269
test_single_optgp () (in
test_sampling), 274

test_single_point_space()
test_sampling), 275

test_single_reaction_deletion () (inmod-
ule test_deletion), 269

module

(in module

test_single_reaction_deletion_benchmark@st_validate () (in

(in module test_deletion), 269

test_subtract_metabolite_benchmark ()
module
bra.test.test_core.test_core_reaction), 212
test_time_limit () (in module test_solver), 272
test_tolerance_assignment () (in module co-
bra.test.test_core.test_configuration), 210
test_toy_model_tolerance_with_different_default ()
module
bra.test.test_core.test_configuration), 210
(in module co-
bra.test.test_core.test_model), 218
test_twist_irrev_right_to_left_reaction_to_left_t

co-

co-

(in module co-
bra.test.test_core.test_core_reaction), 213
test_union () (in module co-
bra.test.test_core.test_dictlist), 214
test_util (module), 271
module co-

bra.test.test_io.test_sbml), 223, 224

test_single_reaction_deletion_linear rdwoms() _validate_formula_ compartment ()

(in module test_deletion), 269
test_single_reaction_deletion_room()

(cobra.test.test_manipulation. TestManipulation
method), 226

(in module test_deletion), 269 test_validate_json () (in module co-
test_sink () (co- bra.test.test_io.test_json), 221

bra.test.test_medium.TestTypeDetection test_validate_mass_balance () (co-
302 Index

cobra Documentation, Release 0.18.1

bra.test.test_manipulation. TestManipulation
method), 226
test_validate_wrong_sample ()
test_achr), 274
test_validation_warnings () (in module co-
bra.test.test_io.test_sbml), 224
test_variability (module), 264

(in module

test_variables_samples () (in module
test_achr), 274
test_variables_samples () (in module

test_optgp), 273

bra.test.test_io.test_io_order), 221

to_frame () (cobra.core.MetaboliteSummary
method), 128

to_frame () (cobra.core.Solution method), 126

to_frame () (cobra.core.solution.Solution method),
104

to_frame () (cobra.core.Summary method), 128

to_frame () (cobra.core.summary.metabolite_summary.MetaboliteSun
method), 76

to_frame () (cobra.core.summary.MetaboliteSummary
method), 79

test_weird_left_to_right_reaction_issue(Q_frame () (cobra.core.summary.model_summary.ModelSummary

(in module
bra.test.test_core.test_core_reaction), 213

test_write_1() (co-
bra.test.test_io.test_sbml. TestCobralO
method), 224

test_write_2 ()
bra.test.test_io.test_sbml.TestCobralO
method), 224

test_write_pickle () (in module
bra.test.test_io.test_pickle), 223

test_wrong_method () (in
test_sampling), 274

TestCobralO (class in cobra.test.test_io.test_sbml),
223

co-

(co-

co-

module

TestErrorsAndExceptions (class in co-
bra.test.test_medium), 227
TestManipulation (class in co-
bra.test.test_manipulation), 226
TestMinimalMedia (class in co-
bra.test.test_medium), 226
TestModelMedium (class in co-
bra.test.test_medium), 226
TestTypeDetection (class in co-

bra.test.test_medium), 226

textbook (in module update_pickles), 270

tg (in module update_pickles), 270

thinning (cobra.sampling.achrACHRSampler at-
tribute), 190

thinning (cobra.sampling. ACHRSampler attribute),
202

thinning (cobra.sampling.hr_sampler. HRSampler
attribute), 193

thinning (cobra.sampling.HRSampler attribute),
199

thinning (cobra.sampling.optgp.OptGPSampler at-
tribute), 196

thinning (cobra.sampling.OptGPSampler at-
tribute), 204

threshold (cobra.core.Summary attribute), 128

threshold (cobra.core.summary.Summary at-

tribute), 78
threshold (cobra.core.summary.summary.Summary
attribute), 77
tiny_toy_model () (in module cobra.test.conftest),
225
tmp_path () module

(in co-

method), 76

to_frame () (cobra.core.summary.ModelSummary
method), 80

to_frame () (cobra.core.summary.Summary
method), 78, 79

to_~frame () (cobra.core.summary.summary.Summary
method), 77, 78

to_frame () (cobra.Solution method), 262

to_json () (in module cobra.io), 176
to_json () (in module cobra.io.json), 164
to_yaml () (in module cobra.io), 179

to_yaml () (in module cobra.io.yaml), 173

tolerance () (cobra.core.Model property), 112

tolerance () (cobra.core.model.Model property),
90

tolerance () (cobra.Model property), 249

total_components_flux () (in module co-
bra.flux_analysis.phenotype_phase_plane),
144

total_yield() (in module co-
bra.flux_analysis.phenotype_phase_plane),
143

trial_names (in module co-

bra.test.test_io.test_sbml), 223
trials (in module cobra.test.test_io.test_sbml), 223

U

Unbounded, 242
UndefinedSolution, 242

undelete_model_genes () (in module co-
bra.manipulation), 184
undelete_model_genes () (in module co-

bra.manipulation.delete), 181
union () (cobra.core.DictList method), 107
union () (cobra.core.dictlist.DictList method), 81
union () (cobra.DictList method), 244
Unit (in module cobra.io.sbml), 168
UNITS_FLUX (in module cobra.io.sbml), 168
update_costs ()
bra.flux_analysis.gapfilling. GapFiller
method), 135
update_pickles (module), 270
update_variable_bounds ()
bra.core.Reaction method), 119
update_variable_bounds ()
bra.core.reaction.Reaction method), 97

(co-

(co-

(co-

Index

303

cobra Documentation, Release 0.18.1

update_variable_bounds () (cobra.Reaction
method), 256
upper_bound (in module update_pickles), 270
upper_bound () (cobra.core.Reaction property),
119
upper_bound ()
property), 97
upper_bound () (cobra.Reaction property), 256
UPPER_BOUND__ID (in module cobra.io.sbml), 168
uppercase_AND (in module cobra.core.reaction), 96
uppercase_OR (in module cobra.core.reaction), 96

(cobra.core.reaction.Reaction

URL_IDENTIFIERS_PATTERN (in module co-
bra.io.sbml), 172
URL_IDENTIFIERS_PREFIX (in module co-

bra.io.sbml), 172

\Y

validate () (cobra.flux_analysis.gapfilling. GapFiller
method), 136
validate () (cobra.sampling.hr_sampler. HRSampler

warmup (cobra.sampling.OptGPSampler attribute),
204

weight () (cobra.core.formula.Formula property), 83

write_sbml_model () (in module cobra.io), 178

write_sbml_model () (in module cobra.io.sbml),
170

X

x (cobra.core.LegacySolution attribute), 126

x (cobra.core.solution.LegacySolution attribute), 104

x () (cobra.core.Reaction property), 121

x () (cobra.core.reaction.Reaction property), 99

x () (cobra.Reaction property), 257

x_dict (cobra.core.LegacySolution attribute), 126

x_dict (cobra.core.solution.LegacySolution
tribute), 104

at-

Y

y (cobra.core.LegacySolution attribute), 126
v (cobra.core.solution.LegacySolution attribute), 104

method), 195 v () (cobra.core.Metabolite property), 110
validate () (cobra.sampling. HRSampler method), v () (cobra.core.metabolite.Metabolite property), 87
201 v () (cobra.core.Reaction property), 121
validate_sbml_model () (in module cobra.io), v () (cobra.core.reaction.Reaction property), 99
178 v () (cobra.Metabolite property), 247
validate_sbml_model () (in module co- vy () (cobra.Reaction property), 258
bra.io.sbml), 172 y_dict (cobra.core.LegacySolution attribute), 126
variable_bounds (in module co- y_dict (cobra.core.solution.LegacySolution at-
bra.sampling.hr_sampler), 192 tribute), 105
variables () (cobra.core.Model property), 115 yaml (in module cobra.io.yaml), 173
variables () (cobra.core.model.Model property), YAML_SPEC (in module cobra.io.yaml), 173
93
variables () (cobra.Model property), 252 Z
visit_BinOp () (cobra.core.gene. GPRCleaner 7mro_BOUND_TD (in module cobra.io.sbml), 168
method), 84
visit_BoolOp () (co-
bra.manipulation.delete._GeneRemover
method), 182
visit_Name () (cobra.core.gene. GPRCleaner
method), 84
visit_Name () (co-
bra.manipulation.delete._GeneRemover
method), 182
visit_Name () (co-
bra.manipulation.modify._GeneEscaper
method), 183
W
warmup (cobra.sampling.achrACHRSampler at-
tribute), 190
warmup (cobra.sampling ACHRSampler attribute),
202
warmup (cobra.sampling.hr_sampler. HRSampler at-
tribute), 194
warmup (cobra.sampling. HRSampler attribute), 200
warmup (cobra.sampling.optgp.OptGPSampler
attribute), 196
304 Index

	Global Configuration
	The configuration object
	Reaction bounds
	Solver

	Building a Model
	Reading and Writing Models
	SBML
	JSON
	YAML
	MATLAB
	Pickle

	Simulating with FBA
	Running FBA
	Changing the Objectives
	Running FVA
	Running pFBA
	Running geometric FBA

	Simulating Deletions
	Knocking out single genes and reactions
	Single Deletions
	Double Deletions

	Production envelopes
	Flux sampling
	Basic usage
	Advanced usage
	Adding constraints

	Loopless FBA
	Loopless solution
	Loopless model
	Method

	Consistency testing
	Using FVA
	Using FASTCC

	Gapfillling
	Growth media
	Minimal media
	Boundary reactions

	Solvers
	Internal solver interfaces

	Tailored constraints, variables and objectives
	Constraints
	Objectives
	Variables

	Dynamic Flux Balance Analysis (dFBA) in COBRApy
	Set up the dynamic system
	Run the dynamic FBA simulation

	Using the COBRA toolbox with cobrapy
	FAQ
	How do I install cobrapy?
	How do I cite cobrapy?
	How do I rename reactions or metabolites?
	How do I delete a gene?
	How do I change the reversibility of a Reaction?
	How do I generate an LP file from a COBRA model?

	API Reference
	cobra
	test_room
	test_geometric
	test_parsimonious
	test_reaction
	test_gapfilling
	test_variability
	test_fastcc
	test_moma
	conftest
	test_loopless
	test_deletion
	test_phenotype_phase_plane
	update_pickles
	test_util
	test_array
	test_solver
	test_optgp
	test_achr
	test_sampling

	Indices and tables
	Python Module Index
	Index

